O uso da linguagem algébrica no 9.º ano: Abordagens, significados e dificuldades

Autores

DOI:

https://doi.org/10.30827/pna.v18i4.27382

Palavras-chave:

Aprendizagem da Álgebra, Linguagem algébrica, Sentido de símbolo, Significado, Símbolo

Resumo

O objetivo deste artigo é caracterizar o uso da linguagem algébrica por alunos de 9.º ano, no que se refere a estratégias, significados e dificuldades. Para tal, discutimos as produções decorrentes da realização de uma tarefa de cunho algébrico por seis alunos. Os resultados mostram o uso de estratégias simbólicas e de estratégias baseadas na reflexão informal e a atribuição de significados adequados a símbolos, mas uma disposição limitada de busca e revisão de significados de expressões algébricas. Usar parênteses, multiplicar monómios e expressar relações presentes no contexto do problema destacam-se como as principais dificuldades dos alunos.

Downloads

Não há dados estatísticos.

Biografias Autor

João Pedro da Ponte, Universidade de Lisboa, Portugal

Doutor em Educação Matemática pela Universidade da Georgia (EUA) e professor catedrático do Instituto de Educação da Universidade de Lisboa. Foi professor visitante em diversas universidades no Brasil, Espanha e Estados Unidos da América. Coordenou diversos projetos de investigação de Didática da Matemática, Formação de Professores e Tecnologias de Informação e Comunicação (TIC) e dirigiu numerosas teses de mestrado e doutoramento. 

Joana Mata-Pereira, Universidade Católica Portuguesa, Portugal

Doutora em Educação Matemática pelo Instituto de Educação da Universidade de Lisboa e professora da Universidade Católica Portuguesa. Atuou como investigadora e professora assistente no Instituto de Educação da Universidade de Lisboa. Tem experiência na área de Educação Matemática, com ênfase no Raciocínio Matemático.

Referências

Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24-35.

Arcavi, A. (2006). El desarrollo y el uso del sentido de los símbolos. Em I. Vale, L. Fonseca, A. Barbosa, T. Pimentel, P. Canavarro e L. Santos (Eds.), Números e Álgebra na aprendizagem da Matemática e na formação de professores (pp. 29-48). SEM-SPCE.

Arcavi, A., Drijvers, P., e Stacey, K. (2017). The learning and teaching of Algebra: Ideas, insights and activities. Routledge.

Ayalon, M. e Wilkie, K. (2020). Students’ identification and expression of relations between variables in linear functions tasks in three curriculum contexts. Mathematical Thinking and Learning, 22(1), 1-22. https://doi.org/10.1080/10986065.2019.1619221

Bogdan, R., e Biklen, S. (1994). Investigação qualitativa em educação. Porto Editora.

Branco, N., e Ponte, J. (2012). The study of pictorial sequences as a support to the development of algebraic thinking. Far East Journal of Mathematical Education, 8(2), 101-135.

Fey, J. T. (1990). Quantity. In L. A. Steen (Ed.), On the shoulders of giants: New approaches to numeracy (pp. 61-94). National Academy Press.

Graham, K., Cuoco, A., e Zimmermann, G. (2009). Focus in high school mathematics: Reasoning and sense making in Algebra. National Council of Teachers of Mathematics.

Izsák, A. (2011). Representational competence and algebraic modeling. Em J. Cai, e E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 239-256). Springer. https://doi:10.1007/978-3-642-17735-4

Kaput, J., e Shaffer, D. (2002). On the development of human representational competence from an evolutionary point of view. Em K. Gravemeijer, R. Lehrer, B. v. Oers, e L. Verschaf (Edits.), Symbolizing, modeling and tool use in mathematics education (pp. 277-293). Kluwer.

Kieran, C. (2004). Algebraic Thinking in the Early Grades: What Is It? The Mathematics Educator, 8(1), 139-151.

Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. Em F. Lester (Ed.), Second handbook of reseach in mathematics teaching and learning (pp. 707-756). NCTM.

Kilhamn, C. (2013, Fevereiro, 6-10). Hidden differences in teachers' approch to algebra – a comparative case study of two lessons. Em B. Ubuz, C. Haser, e M. A. Mariotti (Eds.) Proceedings of the 8th Congress of the European Society for Research in Mathematics Education. Antalya Turky: CERME 8

Kop, P., Janssen, F., Drijvers, P., e van Driel, J. (2020). The relation between graphing formulas by hand and students' symbol sense. Educational Studies in Mathematics, 105, 137-161. https://doi.org/10.1007/s10649-020-09970-3

MEC (2013). Programa e Metas curriculares: Ensino Básico. Ministério da Educação e Ciência.

Moura, A., e Sousa, M. (2005). O lógico-histórico da álgebra não simbólica e da álgebra simbólica:dois olhares diferentes. Zetetiké, 13(24), 11-46.

NCTM. (2000). Principles and Standards for School Mathematics. NCTM.

Palatnik, A., e Koichu, B. (2017). Sense making in the context of algebraic activities. Educational Studies in Mathematics, 95, 245-262. https://doi.org/10.1007/s10649-016-9744-1

Pinkernell, G., Düsi, C., e Vogel, M. (2017, Fevereiro, 1-5). Aspects of proficiency in elementary algebra. Em T. Dooley e G. Gueudet (Eds.) Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education. Dublin: CERME10.

Ponte, J. P., Branco, N., e Matos, A. (2009). Álgebra no Ensino Básico. DGIDC.

Ponte, J., Branco, N., Quaresma, M., e Azevedo, A. (2013). Investigações e explorações como parte do trabalho quotidiano na sala de aula. Revista de Educação em Ciências e Matemáticas. Amazônia, 9, 5-22.

Ramos, L., Guifarro, M., e Casas, L. (2021). Dificultades en el aprendizaje del álgebra, un estudio con pruebas estandarizadas. Bolema, 35(70), 1016-1033. https://doi.org/10.1590/1980-4415v35n70a21

Sfard, A., e Linchevski, L. (1994). The gains and the pitfalls of reification: The case of algebra. Educational Studies in Mathematics, 26, 191-228.

Sharpe, S. (2019). An algebraic translation task solved by grade 7–9 students. Mathematical Thinking and Learning, 21(1), 78-84. https://doi.org/10.1080/10986065.2019.1564970

Tabach, M., e Friedlander, A. (2017). Algebraic procedures and creative thinking. ZDM Mathematics Education, 49, 53-63. https://doi.org/10.1007/s11858-016-0803-y

Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. Em A. Coxford e A. Shulte (Eds.), The ideas of algebra, K-12 (pp. 8-19). NCTM.

Weinberg, A., Dresen, J., e Slater, T. (2016). Students’ understanding of algebraic notation: A semiotic systems perspective. Journal of Mathematical Behavior, 43, 70-88. https://doi.org/10.1016/j.jmathb.2016.06.001

Wilkie, K. (2019). Investigating secondary students’ generalization, graphing, and construction of figural patterns for making sense of quadratic functions. Journal of Mathematical Behavior, 54, 1-17. https://doi:10.1016/j.jmathb.2019.01.005

Zorn, P. (2002, Julho, 1-6). Algebra, Computer Algebra and Mathematical Thinking. Proceedings of the 2nd International Conference on the Teaching of Mathematics. Hersonissos, Crete: J. Wiley. http://users.math.uoc.gr/~ictm2/Proceedings/ICTM2_Proceedings_Table_of_Contents.html

Downloads

Publicado

2024-07-04

Edição

Secção

Artículos