The use of algebraic language in grade 9: Approaches, meanings, and difficulties
DOI:
https://doi.org/10.30827/pna.v18i4.27382Keywords:
Algebraic language, Learning Algebra, Meaning, Symbol, Symbol SenseAbstract
The aim of this article is to characterize the use of algebraic language by grade 9 students, with regard to strategies, meanings and difficulties. For that, we discuss the productions resulting from solving an algebraic task by six students. The results show the use of symbolic strategies and strategies based on informal reflection and the attribution of appropriate meanings to symbols, but a limited willingness to search and revise the meanings of algebraic expressions. Using parentheses, multiplying monomials and expressing relationships present in the context of the problem stand out as the students’ main difficulties.
Downloads
References
Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24-35.
Arcavi, A. (2006). El desarrollo y el uso del sentido de los símbolos. Em I. Vale, L. Fonseca, A. Barbosa, T. Pimentel, P. Canavarro e L. Santos (Eds.), Números e Álgebra na aprendizagem da Matemática e na formação de professores (pp. 29-48). SEM-SPCE.
Arcavi, A., Drijvers, P., e Stacey, K. (2017). The learning and teaching of Algebra: Ideas, insights and activities. Routledge.
Ayalon, M. e Wilkie, K. (2020). Students’ identification and expression of relations between variables in linear functions tasks in three curriculum contexts. Mathematical Thinking and Learning, 22(1), 1-22. https://doi.org/10.1080/10986065.2019.1619221
Bogdan, R., e Biklen, S. (1994). Investigação qualitativa em educação. Porto Editora.
Branco, N., e Ponte, J. (2012). The study of pictorial sequences as a support to the development of algebraic thinking. Far East Journal of Mathematical Education, 8(2), 101-135.
Fey, J. T. (1990). Quantity. In L. A. Steen (Ed.), On the shoulders of giants: New approaches to numeracy (pp. 61-94). National Academy Press.
Graham, K., Cuoco, A., e Zimmermann, G. (2009). Focus in high school mathematics: Reasoning and sense making in Algebra. National Council of Teachers of Mathematics.
Izsák, A. (2011). Representational competence and algebraic modeling. Em J. Cai, e E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 239-256). Springer. https://doi:10.1007/978-3-642-17735-4
Kaput, J., e Shaffer, D. (2002). On the development of human representational competence from an evolutionary point of view. Em K. Gravemeijer, R. Lehrer, B. v. Oers, e L. Verschaf (Edits.), Symbolizing, modeling and tool use in mathematics education (pp. 277-293). Kluwer.
Kieran, C. (2004). Algebraic Thinking in the Early Grades: What Is It? The Mathematics Educator, 8(1), 139-151.
Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. Em F. Lester (Ed.), Second handbook of reseach in mathematics teaching and learning (pp. 707-756). NCTM.
Kilhamn, C. (2013, Fevereiro, 6-10). Hidden differences in teachers' approch to algebra – a comparative case study of two lessons. Em B. Ubuz, C. Haser, e M. A. Mariotti (Eds.) Proceedings of the 8th Congress of the European Society for Research in Mathematics Education. Antalya Turky: CERME 8
Kop, P., Janssen, F., Drijvers, P., e van Driel, J. (2020). The relation between graphing formulas by hand and students' symbol sense. Educational Studies in Mathematics, 105, 137-161. https://doi.org/10.1007/s10649-020-09970-3
MEC (2013). Programa e Metas curriculares: Ensino Básico. Ministério da Educação e Ciência.
Moura, A., e Sousa, M. (2005). O lógico-histórico da álgebra não simbólica e da álgebra simbólica:dois olhares diferentes. Zetetiké, 13(24), 11-46.
NCTM. (2000). Principles and Standards for School Mathematics. NCTM.
Palatnik, A., e Koichu, B. (2017). Sense making in the context of algebraic activities. Educational Studies in Mathematics, 95, 245-262. https://doi.org/10.1007/s10649-016-9744-1
Pinkernell, G., Düsi, C., e Vogel, M. (2017, Fevereiro, 1-5). Aspects of proficiency in elementary algebra. Em T. Dooley e G. Gueudet (Eds.) Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education. Dublin: CERME10.
Ponte, J. P., Branco, N., e Matos, A. (2009). Álgebra no Ensino Básico. DGIDC.
Ponte, J., Branco, N., Quaresma, M., e Azevedo, A. (2013). Investigações e explorações como parte do trabalho quotidiano na sala de aula. Revista de Educação em Ciências e Matemáticas. Amazônia, 9, 5-22.
Ramos, L., Guifarro, M., e Casas, L. (2021). Dificultades en el aprendizaje del álgebra, un estudio con pruebas estandarizadas. Bolema, 35(70), 1016-1033. https://doi.org/10.1590/1980-4415v35n70a21
Sfard, A., e Linchevski, L. (1994). The gains and the pitfalls of reification: The case of algebra. Educational Studies in Mathematics, 26, 191-228.
Sharpe, S. (2019). An algebraic translation task solved by grade 7–9 students. Mathematical Thinking and Learning, 21(1), 78-84. https://doi.org/10.1080/10986065.2019.1564970
Tabach, M., e Friedlander, A. (2017). Algebraic procedures and creative thinking. ZDM Mathematics Education, 49, 53-63. https://doi.org/10.1007/s11858-016-0803-y
Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. Em A. Coxford e A. Shulte (Eds.), The ideas of algebra, K-12 (pp. 8-19). NCTM.
Weinberg, A., Dresen, J., e Slater, T. (2016). Students’ understanding of algebraic notation: A semiotic systems perspective. Journal of Mathematical Behavior, 43, 70-88. https://doi.org/10.1016/j.jmathb.2016.06.001
Wilkie, K. (2019). Investigating secondary students’ generalization, graphing, and construction of figural patterns for making sense of quadratic functions. Journal of Mathematical Behavior, 54, 1-17. https://doi:10.1016/j.jmathb.2019.01.005
Zorn, P. (2002, Julho, 1-6). Algebra, Computer Algebra and Mathematical Thinking. Proceedings of the 2nd International Conference on the Teaching of Mathematics. Hersonissos, Crete: J. Wiley. http://users.math.uoc.gr/~ictm2/Proceedings/ICTM2_Proceedings_Table_of_Contents.html
Downloads
Published
Issue
Section
License
Copyright (c) 2024 PNA. Revista de Investigación en Didáctica de la Matemática
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.