¿Qué impulsa a los profesores de L2 a adoptar las tecnologías de IA? Una investigación fenomenológica sobre el papel de los recursos personales y laborales
Palabras clave:
inteligencia artificial, recursos laborales, recursos personales, investigación fenomenológica, profesores de L2Resumen
Esta investigación fenomenológica profundizó en las contribuciones de los recursos personales y laborales a la adopción de la inteligencia artificial (IA) por parte de los profesores de L2 en sus prácticas docentes. Los datos se recopilaron de 27 profesores de L2 a través de un cuestionario abierto y un marco narrativo, y se analizaron mediante análisis de contenido. Los resultados revelaron que los recursos personales, como la autoeficacia tecnológica, la alfabetización en IA, la apertura a la innovación y la resiliencia, pueden afectar significativamente la adopción de la IA por parte de los profesores de L2. Los recursos laborales, que incluyen el apoyo institucional, la disponibilidad de herramientas eficientes y las oportunidades de desarrollo profesional, también pueden ejercer un impacto directo sobre la disposición de los profesores a adoptar la IA. El estudio contribuye a la comprensión de cómo interactúan estos recursos para moldear el compromiso de los profesores de L2 con la IA y ofrece implicaciones prácticas para las instituciones educativas que buscan mejorar la adopción de la IA entre sus educadores.
Descargas
Citas
Al-khresheh, M. H. (2024). Bridging technology and pedagogy from a global lens: Teachers’ perspectives on integrating ChatGPT in English language teaching. Computers and Education: Artificial Intelligence, 6, 100218. https://doi.org/10.1016/j.caeai.2024.100218
Bakker, A. B., & Demerouti, E. (2007). The job demands‐resources model: State of the art. Journal of Managerial Psychology, 22(3), 309–328. https://doi.org/10.1108/02683940710733115
Bakker, A. B., & Demerouti, E. (2017). Job demands-resources theory: Taking stock and looking forward. Journal of Occupational Health Psychology, 22(3), 273–285. https://doi.org/10.1037/ocp00 00056
Bakker, A. B., Demerouti, E., & Sanz-Vergel, A. (2023). Job demands–resources theory: Ten years later. Annual Review of Organizational Psychology and Organizational Behavior, 10(1), 25–53. https://doi.org/10.1146/annurev-orgpsych-120920-053933
Bakker, A. B., Hakanen, J. J., Demerouti, E., & Xanthopoulou, D. (2007). Job resources boost work engagement, particularly when job demands are high. Journal of Educational Psychology, 99(2), 274–284. https://doi.org/10.1037/0022-0663.99.2.274
Barrett, A., & Pack, A. (2023). Not quite eye to AI: Student and teacher perspectives on the use of generative artificial intelligence in the writing process. International Journal of Educational Technology in Higher Education, 20(1), 59. https://doi.org/10.1186/s41239-023-00427-0
Barrios-Beltran, D. (2024). Enriching the teaching-learning experience by using AI tools in the L2 classroom. In F. Pan (Ed.), AI in language teaching, learning, and assessment (pp. 61–77). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-0872-1
Belda-Medina, J., & Kokošková, V. (2024). ChatGPT for language learning: Assessing teacher candidates’ skills and perceptions using the Technology Acceptance Model (TAM). Innovation in Language Learning and Teaching. https://doi.org/10.1080/17501229.2024.2435900
Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education. Educational Technology & Society, 25(1), 28–47.
Chocarro, R., Cortiñas, M., & Marcos-Matás, G. (2023). Teachers’ attitudes towards chatbots in education: A technology acceptance model approach considering the effect of social language, bot proactiveness, and users’ characteristics. Educational Studies, 49(2), 295–313. https://doi.org/10.1080/03055698.2020.1850426
Choi, S., Jang, Y., & Kim, H. (2023). Influence of pedagogical beliefs and perceived trust on teachers’ acceptance of educational artificial intelligence tools. International Journal of Human–Computer Interaction, 39(4), 910–922. https://doi.org/10.1080/10447318.2022.2049145
Christina, R., & Panagiotidis, P. (2024). Teachers’ attitudes towards AI integration in foreign language learning: Supporting differentiated instruction and flipped classroom. European Journal of Education, 7(2), 88–104.
Creswell, J. W., & Poth, C. N. (Eds.) (2016). Qualitative inquiry and research design: Choosing among five approaches. Sage publications.
Dai, C. P., & Ke, F. (2022). Educational applications of artificial intelligence in simulation-based learning: A systematic mapping review. Computers and Education: Artificial Intelligence, 3, 100087. https://doi.org/10.1016/j.caeai.2022.100087
Dai, K., & Liu, Q. (2024). Leveraging artificial intelligence (AI) in English as a foreign language (EFL) classes: Challenges and opportunities in the spotlight. Computers in Human Behavior, 108354. https://doi.org/10.1016/j.chb.2024.108354
Derakhshan, A. (2025). EFL students’ perceptions about the role of generative artificial intelligence (GAI)-mediated instruction in their emotional engagement and goal orientation: A motivational climate theory (MCT) perspective in focus. Learning and Motivation, 90, 102114. https://doi.org/10.1016/j.lmot.2025.102114
Derakhshan, A., & Ghiasvand, F. (2024). Is ChatGPT an evil or an angel for second language education and research? A phenomenographic study of research‐active EFL teachers’ perceptions. International Journal of Applied Linguistics, 34(4), 1246–1264. https://doi.org/10.1111/ijal.12561
Derakhshan, A., Teo, T., & Khazaie, S. (2025). Investigating the usefulness of artificial intelligence-driven robots in developing empathy for English for medical purposes communication: The role-play of Asian and African students. Computers in Human Behavior, 162, 108416. https://doi.org/10.1016/j.chb.2024.108416
Divekar, R. R., Drozdal, J., Chabot, S., Zhou, Y., Su, H., Chen, Y., ... & Braasch, J. (2022). Foreign language acquisition via artificial intelligence and extended reality: Design and evaluation. Computer Assisted Language Learning, 35(9), 2332–2360. https://doi.org/10.1080/09588221.2021.1879162
Fathi, J., Rahimi, M., & Derakhshan, A. (2024). Improving EFL learners’ speaking skills and willingness to communicate via artificial intelligence-mediated interactions. System, 121, 103254. https://doi.org/10.1016/j.system.2024.103254
Heidegger, M. (Ed.) (2005). Introduction to phenomenological research. Indiana University Press.
Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277–1288. https://doi.org/10.1177/ 1049732305276687
Huang, X., Zou, D., Cheng, G., Chen, X., & Xie, H. (2023). Trends, research issues and applications of artificial intelligence in language education. Educational Technology & Society, 26(1), 112–131.
Ilgun Dibek, M., Sahin Kursad, M., & Erdogan, T. (2024). Influence of artificial intelligence tools on higher order thinking skills: A meta-analysis. Interactive Learning Environments. https://doi.org/10.1080/10494820.2024.2402028
Korucu-Kış, S. (2024). Zone of proximal creativity: An empirical study on EFL teachers’ use of ChatGPT for enhanced practice. Thinking Skills and Creativity, 54, 101639. https://doi.org/10.1016/j.tsc.2024.101639
Lan, Y. (2024). Through tensions to identity-based motivations: Exploring teacher professional identity in Artificial Intelligence-enhanced teacher training. Teaching and Teacher Education, 151, 104736. https://doi.org/10.1016/j.tate.2024.104736
Law, L. (2024). Application of generative artificial intelligence (GenAI) in language teaching and learning: A scoping literature review. Computers and Education Open, 6, 100174. https://doi.org/10.1016/j.caeo.2024.100174
Liu, W., & Wang, Y. (2024). The effects of using AI tools on critical thinking in English literature classes among EFL learners: An intervention study. European Journal of Education. https://doi.org/https://doi.org/10.1111/ejed.12804
Liu, Y., & Chang, P. (2024). Exploring EFL teachers’ emotional experiences and adaptive expertise in the context of AI advancements: A positive psychology perspective. System, 126, 103463. https://doi.org/10.1016/j.system.2024.103463
Lu, L., Wang, C., & Wang, Y. (2024). The contribution of teacher self-efficacy, resilience and emotion regulation to teachers’ well-being: Technology-enhanced teaching context. European Journal of Education. e12755. https://doi.org/https://doi.org/10.1111/ejed.12755
Nassaji, H. (2020). Good qualitative research. Language Teaching Research, 24(4), 427–431. https://doi.org/10.1177/1362168820941288
Shafiee Rad, H. (2024). Revolutionizing L2 speaking proficiency, willingness to communicate, and perceptions through artificial intelligence: A case of Speeko application. Innovation in Language Learning and Teaching, 18(4), 364–379. https://doi.org/10.1080/17501229.2024.2309539
Shen, Y., & Guo, H. (2024). “I feel AI is neither too good nor too bad”: Unveiling Chinese EFL teachers’ perceived emotions in generative AI-mediated L2 classes. Computers in Human Behavior, 161, 108429. https://doi.org/10.1016/j.chb.2024.108429
Sun, P. P., & Mei, B. (2022). Modeling preservice Chinese-as-a-second/foreign-language teachers’ adoption of educational technology: A technology acceptance perspective. Computer Assisted Language Learning, 35(4), 816–839. https://doi.org/10.1080/09588221.2020.1750430
Tram, N. H. M. (2024). Unveiling the drivers of AI integration among language teachers: Integrating UTAUT and AI-TPACK. Computers in the Schools. https://doi.org/10.1080/07380569.2024.2441155
Tram, N. H. M., & Tran-Thanh, V. (2024). The role of supportive environments in shaping EFL teachers’ adoption of ChatGPT. In H. P. Bui & E. Namaziandost (Eds.), Innovations in technologies for language teaching and learning (pp. 55–78). Springer Nature Switzerland.
Tummers, L. G., & Bakker, A. B. (2021). Leadership and job demands-resources theory: A systematic review. Frontiers in Psychology, 12, 722080.
Wei, L. (2023). Artificial intelligence in language instruction: Impact on English learning achievement, L2 motivation, and self-regulated learning. Frontiers in Psychology, 14, 1261955. https://doi.org/10.3389/fpsyg.2023.1261955
Xanthopoulou, D., Bakker, A. B., Demerouti, E., & Schaufeli, W. B. (2009). Reciprocal relationships between job resources, personal resources, and work engagement. Journal of Vocational behavior, 74(3), 235–244. https://doi.org/10.1016/j.jvb.2008.11.003
Xiao, J., Yang, Y., & Li, M. (2025). Empirical study on the feasibility of hybrid-flexible training model for developing teachers’ artificial intelligence competence. Education and Information Technologies. https://doi.org/10.1007/s10639-025-13460-5
Xin, Z., & Derakhshan, A. (2025). From excitement to anxiety: Exploring English as a foreign language learners' emotional experiences in the artificial intelligence‐powered classrooms. European Journal of Education, 60(1), e12845. https://doi.org/10.1111/ejed.12845
Yang, J., & Lou, K. (2024). Exploring the nexus of self-efficacy in digital literacy and technology acceptance: Insights from L2 Chinese teachers. Asia Pacific Journal of Education. https://doi.org/10.1080/02188791.2024.2336247
Yang, Y. F., Tseng, C. C., & Lai, S. C. (2024). Enhancing teachers’ self-efficacy beliefs in AI-based technology integration into English speaking teaching through a professional development program. Teaching and Teacher Education, 144, 104582. https://doi.org/10.1016/j.tate.2024.104582
Yuan, Y. (2024). An empirical study of the efficacy of AI chatbots for English as a foreign language learning in primary education. Interactive Learning Environments, 32(10), 6774–6789. https://doi.org/10.1080/10494820.2023.2282112
Zhang, C., Hu, M., Wu, W., Kamran, F., & Wang, X. (2025). Unpacking perceived risks and AI trust influences pre-service teachers’ AI acceptance: A structural equation modeling-based multi-group analysis. Education and Information Technologies, 30(2), 2645–2672. https://doi.org/10.1007/s10639-024-12905-7
Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Acceptance of artificial intelligence among pre-service teachers: A multigroup analysis. International Journal of Educational Technology in Higher Education, 20(1), 49. https://doi.org/10.1186/s41239-023-00420-7
Zhi, R., & Wang, Y. (2024). On the relationship between EFL students’ attitudes toward artificial intelligence, teachers’ immediacy and teacher-student rapport, and their willingness to communicate. System, 124, 103341. https://doi.org/https://doi.org/10.1016/j.system.2024.103341
Zhou, C., & Hou, F. (2024). Can AI empower L2 education? Exploring its influence on the behavioural, cognitive and emotional engagement of EFL teachers and language learners. European Journal of Education, 59(4), e12750. https://doi.org/10.1111/ejed.12750
FUNDING INFORMATION:
This work was supported by the General Project of Guangdong Philosophy and Social Sciences Planning 2022, entitled ‘Empirical Research on the Impact of Government-sponsored Overseas Study on the Professional Development of University Teachers: A Case Study of Guangdong Province’ (Grant number: GD22CJY10).
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Professor Yan Wu, Professor Ali Derakhshan

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.