Interpretative Knowledge of Teachers when Solving a Fraction Division Task

Authors

DOI:

https://doi.org/10.30827/pna.v19i3.31002

Keywords:

Fraction Division, Interpretative Knowledge, Teacher
Agencies: This study was partially funded by the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) – Financial Code 88881.311131/2018-00 and 88887.696474/2022-00; for the project “Developing the interpretive and specialized knowledge of teachers and their relationships with Tasks for Teacher Training in the scope of Measurement and Algebraic, Geometric and Stochastic Thinking” (404959/2021-0) and for the Project PID2021-122180OB-I00 (Government of Spain) and by Red Iberoamericana on Specialized Knowledge of Mathematics Teachers (RED MTSK) sponsored by AUIP.

Abstract

Interpretive Knowledge is necessary, since it is linked to teaching practice and teaching with understanding, once it is mobilized by teachers when interpreting students' productions and attributing meaning to them. This work aims to understand Interpretive Knowledge revealed by teachers and pre-service mathematics teachers through a fraction division task. The results show a weak Specialized Mathematical Knowledge of teachers regarding division and fractions. This knowledge supports superficial feedback related to an interpretive assessment, which is expected to limit the contribution to students' mathematical learning in this topic.

Downloads

Author Biographies

Gabriela Gibim, Universidade Estadual de Campinas (Unicamp)

Doutoranda do Programa de Pós-Graduação Multiunidades em Ensino de Ciências e Matemática da Unicamp, graduada em Licenciatura Matemática. Experiência em docência na educação básica (fundamental II e médio) e superior com formação de professores de matemática.

Laura Rifo , Universidade Estadual de Campinas (Unicamp)

Professora de Matemática e Estatística da Universidade Estadual de Campinas desde 2005, trabalha atualmente na formação de professores no ensino de probabilidade como medida de incerteza, vinculada à tomada de decisão racional e ao raciocínio bayesiano.

 

Miguel Ribeiro , Universidade Estadual de Campinas (Unicamp)

Atualmente é professor da Universidade Estadual de Campinas UNICAMP (Brasil). Tem dedicado os últimos 20 anos essencialmente a formação de professores de e que ensinam matemática e desenvolvido trabalhos de pesquisa e formação em diversos países (Portugal, Espanha, México, Chile, EUA, Itália, Noruega).

 

Nuria Climent, University of Huelva

Professora Titular da Universidade da área Didática da Matemática da Universidade de Huelva desde 2011.Experiência como formadora de professores de Ensino Fundamental e Médio em relação ao ensino de matemática na formação inicial e contínua, bem como como docente em programas de Mestrado e Doutorado em Didática da Matemática.

References

Adu-Gyamfi, K., Schwartz, C. S., Sinicrope, R. e Bossé, M. J. (2019). Making sense of fraction division: domain and representation knowledge of preservice elementary teachers on a fraction division task. Mathematics Education Research Journal, 31, 507-528. https://doi.org/10.1007/S13394-019-00265-2 DOI: https://doi.org/10.1007/s13394-019-00265-2

Amaral, C. A. D., Veiga Ferreira de Souza, M. A. e Belford Powell, A. (2022). Construção do conceito de fração sob a perspectiva de medição: contribuições do 4a instructional model. Revista Latinoamericana de Investigación en Matemática Educativa, 25(3), 263-288. https://doi.org/10.1007/S13394-019-00265-2 DOI: https://doi.org/10.12802/relime.22.2531

Ball, D. L. (1990a). The mathematical understandings that prospective teachers bring to teacher education. Elementary School Journal, 90, 449-466. https://doi.org/10.2307/749140 DOI: https://doi.org/10.1086/461626

Ball, D. L. (1990b). Prospective elementary and secondary teachers’ understanding of division. Journal for Research in Mathematics Education, 21, 132-144. https://doi.org/10.2307/749140 DOI: https://doi.org/10.5951/jresematheduc.21.2.0132

Ball, D. L., Hill, H.C. e Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14-17.

Ball, D., Thames, M. e Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554 DOI: https://doi.org/10.1177/0022487108324554

Borasi, R. (1994). Capitalizing on Errors as “Springboards for Inquiry”: A Teaching Experiment. Journal for Research in Mathematics Education, 25(2), 166-208. https://doi.org/10.2307/749507 DOI: https://doi.org/10.5951/jresematheduc.25.2.0166

Borko, H., Eisenhart, M., Brown, C. A., Underhill, R. G., Jones, D. e Agard, P. C. (1992). Learning to teach hard mathematics: Do novice teachers and their instructors give up too easily? Journal for Research in Mathematics Education, 23, 194-222. https://doi.org/10.5951/jresematheduc.23.3.0194 DOI: https://doi.org/10.5951/jresematheduc.23.3.0194

Carrillo, J., Contreras, L. C. e Flores, P. (2013). Un modelo de conocimiento especializado del profesor de matemáticas. In L. Rico, M. C. Cañadas, J. Gutiérrez, M. Molina e I. Segovia (Eds.), Investigacion en Didáctica de la Matemática. Homenaje a Encarnación Castro (pp. 193-200). Comares.

Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Àvila, D. e Muñoz-Catalán, M. C. (2018). The mathematics teacher’s specialized knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. https://doi.org/10.1080/14794802.2018.1479981 DOI: https://doi.org/10.1080/14794802.2018.1479981

Chen, L., Van Dooren, W., Chen, Q. e Verschaffel, L. (2011). An investigation on Chinese teachers’ realistic problem posing and problem-solving ability and beliefs. International Journal of Science and Mathematics Education, 9(4), 919-948. https://doi.org/10.1007/s10763-010-9259-7 DOI: https://doi.org/10.1007/s10763-010-9259-7

Contreras, M. (2012). Problemas multiplicativos relacionados con la división de fracciones: un estudio sobre su enseñanza y aprendizaje. [Tese de Doutorado, Universidad de Valencia, España]. https://roderic.uv.es/items/421df127-c9ec-4f95-b68d-262f30081945

Davis, B. (1997). Listening for differences: An evolving conception of mathematics teaching. Journal for Research in Mathematics Education, 28(3), 355-376. https://doi.org/10.5951/jresematheduc.28.3.0355 DOI: https://doi.org/10.5951/jresematheduc.28.3.0355

Díaz-Cárdenas, A. F., Díaz-Furlong, A., Díaz-Furlong, H. A., Sankey-García, M. R. e Zago-Portillo, G. (2019). Multiplication and division of fractions: numerical cognition development and assessment procedures. Revista Latinoamericana de Investigación en Matemática Educativa, 22(3), 333-362. https://doi.org/10.12802/relime.19.2234 DOI: https://doi.org/10.12802/relime.19.2234

Di Martino, P., Mellone, M., Minichini, C. e Ribeiro, M. (2016). Prospective teachers’ interpretative knowledge: Giving sense to subtraction algorithms. In S. Zehetmeier, M. Ribeiro, B. Roesken-Winter, e B. Potari (Orgs.), Proceedings ERME topic Conference Mathematics Teaching, Resources and Teacher Professional Development (pp. 66-75). ERME.

Di Martino, P., Mellone, M. e Ribeiro, M. (2019). Interpretative knowledge. Em S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 1-5). Springer. DOI: https://doi.org/10.1007/978-3-319-77487-9_100019-1

Dias, S. e Santos, L. (Setembro, 2009). Feedback on different mathematics tasks. 33rd Conference of International Group for the Psychology of Mathematics Education. Thessaloniki, Greece.

Fazio, L. e Siegler, R. (2011). Educational practices series: teaching fractions. International Bureau of Education.

Flores, P. (2008). El algoritmo de la división de fracciones. Epsilon, 70, 27-40.

García, A. I. M. (2013). Conocimiento profesional de un grupo de profesores sobre la división de fracciones [Dissertação de Mestrado em Didática da Matemática, Universidad de Granada, España]. https://fqm193.ugr.es/media/grupos/FQM193/cms/Ana_Márquez.pdf

Galleguillos, J. e Ribeiro, R. (2019). Prospective mathematics teachers’ interpretative knowledge: Focus on the provided feedback. Em U. T. Jankvist, M. van den Heuvel-Panhuizen, e M. Veldhuis (Eds.). Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (3281-3288). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

Gómez, B., Figueiras, O. e Contreras, M. (2016). Modelos de enseñanza de los algoritmos de la división de fracciones. Avances de Investigación en Educación Matemática, 9, 43-63. https://doi.org/10.35763/aiem.v0i9.147 DOI: https://doi.org/10.35763/aiem.v0i9.147

Hiebert, J. e Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. Em J. Hiebert (Ed.). Conceptual and Procedural Knowledge: the Case of Mathematics (pp. 1-27). Lawrence Erlbaum Associates.

Hoffman B. V. S., Magalhães Brum, J. e Pereira dos Santos-Wagner, V. M. (2023). Reflexões de professores sobre divisão de frações por fração: compreensões e filosofias. Educação Matemática Pesquisa, 25(1), 47-77. https://doi.org/10.23925/1983-3156.2023v25i1p47-77 DOI: https://doi.org/10.23925/1983-3156.2023v25i1p47-77

İşik, C. e Kar, T. (2012). An error analysis in division problems in fractions posed by preservice elementary mathematics teachers. Educational Sciences: Theory & Practice, 12(3), 2289-2309.

Jakobsen, A., Ribeiro, M. e Mellone, M. (2014). Norwegian prospective teachers’ MKT when interpreting pupils’ productions on a fraction task. Nordic Studies in Mathematics Education, 19, 135-150. https://doi.org/10.7146/nomad.v19i3-4.148652 DOI: https://doi.org/10.7146/nomad.v19i3-4.148652

Li, Y. e Kulm, G. (2008). Knowledge and confidence of pre-service mathematics teachers: the case of fraction division. ZDM, 40, 833-843. https://doi.org/10.1007/s11858-008-0148-2 DOI: https://doi.org/10.1007/s11858-008-0148-2

Lee M. Y. (2017). Pre-service teachers’ flexibility with referent units in solving a fraction division problem. Educational Studies in Mathematics, 96, 327-348. https://doi.org/10.1007/s10649-017-9771-6 DOI: https://doi.org/10.1007/s10649-017-9771-6

Lo, J-J. e Luo, F. (2012). Prospective elementary teachers’ knowledge of fraction division. Journal of Mathematics Teacher Education, 15(6), 481-500. https://doi.org/10.1007/s10857-012-9221-4 DOI: https://doi.org/10.1007/s10857-012-9221-4

Ma, L. (1999). Knowing and teaching elementary mathematics. Lawrence Erlbaum. DOI: https://doi.org/10.4324/9781410602589

Mason, J. (2002). Researching your own practice. The discipline of noticing. Routledge Falmer. DOI: https://doi.org/10.4324/9780203471876

Mellone, M., Ribeiro, M., Jakobsen, A., Carotenuto, G., Romano, P. e Pacelli. T. (2020). Mathematics teachers’ interpretative knowledge of students’ errors and non-standard reasoning. Research in Mathematics Education, 22(2), 154-167. https://doi.org/10.1080/14794802.2019.1710557 DOI: https://doi.org/10.1080/14794802.2019.1710557

Mellone, M., Tortora, R., Jakobsen, A. e Ribeiro, M. (2017). Prospective teachers interpret student responses: Between assessment, educational design and research. Em T. Dooley & G. Gueudet (Eds.) (2017). Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (pp. 2498-2555). DCU Institute of Education and ERME.

Moriel, J. G., Wielewski, G. D. e Carrillo, J. A. (2019). Meta-análise sobre Conhecimento para Ensinar Divisão de Frações. Bolema, 33, 988-1026. https://doi.org/10.1590/1980-4415v33n65a02 DOI: https://doi.org/10.1590/1980-4415v33n65a02

Newton, K. J. (2008). An Extensive Analysis of Preservice Elementary Teachers’ Knowledge of Fractions. American Educational Research Journal, 45(4), 1080-1110. https://doi.org/10.3102/0002831208320851 DOI: https://doi.org/10.3102/0002831208320851

Nye, B., Konstantopoulos, S. e Hedges, L. V. (2004). How large are teacher effects. Educational evaluation and policy analysis, 26(3), 237-257. https://doi.org/10.3102/01623737026003237 DOI: https://doi.org/10.3102/01623737026003237

Olanoff, D., Lo, J. e Tobias, J. (2014). Mathematical content knowledge for teaching elementary mathematics: A focus on fractions. The Mathematics Enthusiast, 11(2), 267-310. https://doi.org/10.54870/1551-3440.1304 DOI: https://doi.org/10.54870/1551-3440.1304

Ribeiro, M., Almeida, A. e Mellone, M. (2021). Conceitualizando Tarefas Formativas para Desenvolver as Especificidades do Conhecimento Interpretativo e Especializado do Professor. Perspectivas da Educação Matemática, 14(35), 1-32. https://doi.org/10.46312/pem.v14i35.13263 DOI: https://doi.org/10.46312/pem.v14i35.13263

Rizvi, N. F. e Lawson, M. J. (2007). Prospective teachers' knowledge: Concept of division. International Education Journal, 8(2), 377-392.

Santos, L. e Pinto, L. (Setembro, 2009). Lights and shadows of feedback in mathematics learning. 33rd Conference of International Group for the Psychology of Mathematics Education. Thessaloniki, Greece.

Simon, M. A. (1993). Prospective Elementary Teachers’ Knowledge of Division. Journal for Research in Mathematics Education, 24(3), 233-254. https://doi.org/10.2307/749346 DOI: https://doi.org/10.2307/749346

Stake, R. E. (1995). The art of case study research. SAGE Publications.

Son, J. e Crespo, S. (2009). Prospective teachers’ reasoning and response to a student’s non-traditional strategy when dividing fractions. Journal of Mathematics Teacher Education, 12(4), 235-26. https://doi.org/10.1007/s10857-009-9112-5 DOI: https://doi.org/10.1007/s10857-009-9112-5

Tian, J. e Siegler, R. S. (2017). Fractions learning in children with mathematics difficulties. Journal of Learning Disabilities, 50(6), 614-620. https://doi.org/10.1177/0022219416662032 DOI: https://doi.org/10.1177/0022219416662032

Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case of division of fractions. Journal for Research of Mathematics Education, 31(1), 5-25. https://doi.org/10.2307/749817 DOI: https://doi.org/10.2307/749817

Published

2025-04-11