Una propuesta de cambio curricular: integración del pensamiento algebraico en educación primaria
DOI:
https://doi.org/10.30827/pna.v3i3.6186Palabras clave:
Álgebra, Aritmética, Early-Algebra, Educación primaria, Pensamiento relacional, Sentencias numéricasResumen
Se describe una propuesta curricular basada en la integración de modos de pensamiento algebraicos en el currículo de la educación primaria, la cual está siendo objeto de numerosas investigaciones en la actualidad. En este contexto, partiendo del constructo pensamiento relacional, se presentan resultados de un experimento de enseñanza, basado en el trabajo con sentencias numéricas, que ejemplifica el potencial de dicha propuesta y permite evidenciar la capacidad de alumnos de tercer curso de educación primaria para trabajar en aritmética de un modo algebraico.
Proposal of a Curricular Change: Integration of Algebraic Thinking in Elementary Education
Handle: http://hdl.handle.net/10481/3475
Nº de citas en WOS (2017): 10 (Citas de 2º orden, 28)
Nº de citas en SCOPUS (2017): 4 (Citas de 2º orden, 10)
Descargas
Citas
Bastable, V. y Schifter, D. (2007). Classroom stories: examples of elementary students engaged in early algebra. En J. Kaput, D. W. Carraher y M. L. Blanton (Eds.), Algebra in the early grades (pp. 165-184). Mahwah, NJ: Lawrence Erlbaum Associates. DOI: https://doi.org/10.4324/9781315097435-8
Bednarz, N., Kieran, C. y Lee, L. (1996). Approaches to algebra. Perspectives for seeing. Harmondsworth: BBC y Penguin Books Ltd. DOI: https://doi.org/10.1007/978-94-009-1732-3_1
Blanton, M. L. y Kaput, J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5), 412-446.
Booth, L. R. (1999). Children's difficulties in beginning algebra. En B. Moses (Ed.), Algebraic thinking. Grades K-12. Readings from NCTM's school-based journals and others publications (pp. 299-307). Reston, VA: NCTM.
Brizuela, B. M. y Lara-Roth, S. (2001). Additive relations and function tables. En H. Chick, K. Stacey, J. Vincent y J. Vincent (Eds.), Proceedings of the 12th ICMI study conference. The future of the teaching and learning of algebra (pp.110-119). Melbourne, Australia: University of Melbourne.
Brizuela, B. M. y Schliemann, A. D. (2003). Fourth graders solving equations. En N. A. Pateman, B. J. Dougherty y J. T. Zilliox (Eds), Proceedings of the 27th conference of the International Group for the Psychology of Mathematics Education and the 25th conference of Psychology of Mathematics Education North America, (Vol. 2, pp. 137-144). Honolulu: College of Education, University of Hawaii.
Carpenter, T. P. y Franke, M. L. (2001). Developing algebraic reasoning in the elementary school: generalization and proof. En H. Chick, K. Stacey, J. Vincent y J. Vincent (Eds.), Proceedings of the 12th ICMI study conference. The future of the teaching and learning of algebra (pp.155-162). Melbourne, Australia: University of Melbourne.
Carpenter, T. P., Franke, M. L. y Levi, L. (2003). Thinking mathematically: Integrating arithmetic y algebra in elementary school. Portsmouth, England: Heinemann.
Carpenter, T. P., Franke, M. L. y Levi, L. (2005). From children's mathematics to thinking mathematically: Integrating algebraic reasoning with the development of basic number concepts and skills. Documento no publicado.
Carraher, D. W. y Schliemann, A. D. (2007). Early algebra and algebraic reasoning. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669-705). Reston, VA: NCTM e IAP.
Carraher, D. W., Schliemann, A. D. y Brizuela, B. M. (2000). Early algebra, early arithmetic: Treating operations as functions. Presentado en the Twenty-second annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Tucson, Arizona.
Carraher, D. W., Schliemann, A. D. y Brizuela, B. M. (2001). Can young students operate on unknowns? En M. van der Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the International Group for the Psychology of Mathematics Education, (Vol. 1, pp. 130-140). Utrecht, The Netherlands: Freudenthal Institute.
Carraher, D. W., Schliemann, A. D., Brizuela, B. M. y Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87-115.
Davis, R. B. (1985). ICME-5 Report: Algebraic thinking in the early grades. Journal of Mathematical Behaviour, 4, 195-208.
Davydov, V. (1962). An experiment in introducing elements of algebra in elementary school. Soviet Education, 8, 27-37. DOI: https://doi.org/10.2753/RES1060-9393050127
Drijvers, P. y Hendrikus, M. (2003). Learning algebra in a computer algebra environment: Design research on the understanding of the concept of parameter. Tesis doctoral no publicada. Utrecht, the Netherlands: Utrecht University.
Freiman, V. y Lee, L. (2004). Tracking primary students' understanding of the equal sign. En M. Johnsen y A. Berit (Eds.), Proceedings of the 28th International Group for the Psychology of Mathematics Education, (Vol. 2, pp. 415-422). Bergen, Norway: Bergen University College.
Freudenthal, H. (1974). Soviet research on teaching algebra at the lower grades of elementary school. Educational Studies in Mathematics, 5, 391-412. DOI: https://doi.org/10.1007/BF01420653
Fujii, T. (2003). Probing students' understanding of variables through cognitive conflict problems is the concept of a variable so difficult for students to understand? En N. Pateman, G. Dougherty y J. Zilliox (Eds.), Proceedings of the 27th conference of the International Group for the Psychology of Mathematics Education and the 25th conference of Psychology of Mathematics Education North America, (Vol. 1, pp. 49-66). Honolulu: College of Education, University of Hawaii.
Gómez, B. (1995). Los viejos métodos de cálculo. Un dominio para transitar de la aritmética al álgebra y viceversa. Suma, 20, 61-68.
Hejny, M., Jirotkova, D. y Kratochvilova J. (2006). Early conceptual thinking. En J. Novotná, H. Moraová, M. Krátká y N. Stehlíková (Eds.), Proceedings of the 30th conference of the International Group for the Psychology of Mathematics Education, (Vol. 3, pp. 289-296). Prague, Czech Republic: PME Program Committee.
Hewitt, D. (1998). Approaching arithmetic algebraically. Mathematics Teaching, 163, 19-29.
Kaput, J. (1998). Teaching and learning a new algebra with understanding. Dartmouth, MA: National Center for Improving Student Learning and Achievement in Mathematics and Science.
Kaput, J. (2000). Transforming algebra from an engine of inequity to an engine of mathematical power by “algebrafying” the K-12 curriculum. Dartmouth, MA: National Center for Improving Student Learning and Achievement in Mathematics and Science.
Knuth, E. J., Alibali, M. W., McNeil, N. M., Weinberg, A. y Stephens, A. C. (2005). Middle school students' understanding of core algebraic concepts: equivalence & variable. Zentralblatt für Didaktik der Mathematik [International Reviews on Mathematics Education], 37(1), 68-76. DOI: https://doi.org/10.1007/BF02655899
Koehler, J. (2002). Algebraic reasoning in the elementary grades: Developing an understanding of the equal sign as a relational symbol. Tesis de master no publicada. Wisconsin: Universidad de Wisconsin-Madison.
Lins, R. y Kaput, J. (2004). The early development of algebraic reasoning: the current state of the field. En K. Stacey, H. Chick y M. Kendal (Eds.), The teaching and learning of algebra. The 12th ICMI Study (pp.47-70). Norwell, MA: Kluwer Academic Publishers.
Mason, J. (1996). Expressing generality and roots of algebra. En N. Bednarz, C. Kieran y L. Lee (Eds.), Approaches to algebra. Perspectives for research and teaching (pp. 65-86). London: Kluwer Academic Publishers. DOI: https://doi.org/10.1007/978-94-009-1732-3_5
Mason, J., Graham, A. y Johnston-Wilder, S. (2005). Developing thinking in algebra. London: The Open University y Paul Chapman Publishing.
Molina, M. (2006). Desarrollo de pensamiento relacional y comprensión del signo igual por alumnos de tercero de educación primaria. Tesis doctoral. Granada: Departamento de Didáctica de la Matemática, Universidad de Granada. Disponible en http://cumbia.ath.cx:591/pna/Archivos/MolinaM0728 22.PDF.
Molina, M. y Ambrose, R. (2008). From an operational to a relational conception of the equal sign. Thirds graders' developing algebraic thinking. Focus on Learning Problems in Mathematics, 30(1), 61-80.
Molina, M., Castro, E. y Ambrose, R. (2006). Trabajo con igualdades numéricas para promover pensamiento relacional. PNA, 1(1), 31-46.
Molina, M., Castro, E. y Castro, E. (2007). Teaching experiments within design research. The International Journal of Interdisciplinary Social Sciences, 2(4), 435-440. DOI: https://doi.org/10.18848/1833-1882/CGP/v02i04/52362
National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Autor.
National Council of Teacher of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Autor.
Sáenz-Ludlow, A. y Walgamuth, C. (1998). Third graders' interpretations of equality and the equal symbol. Educational Studies in Mathematics, 35(2), 153-187. DOI: https://doi.org/10.1023/A:1003086304201
Schliemann, A. D., Carraher, D. W., Brizuela, B. M., Earnest, D., Goodrow, A., Lara-Roth, S., et al. (2003). Algebra in elementary school. En N. Pateman, G. Dougherty y J. Zilliox (Eds.), Proceedings of the 27th conference of the International Group for the Psychology of Mathematics Education and the 25th conference of Psychology of Mathematics Education North America, (Vol. 4, pp. 127-134). Honolulu: College of Education, University of Hawaii.
Subramaniam, K. (2004). Naming practices that support reasoning about and with expressions. Presentado en the 10th International Congress on Mathematical Education, Copenhagen, Denmark.
Sutherland, R. (2007). A dramatic shift of attention: From arithmetic to algebraic thinking. En J. Kaput, D. W. Carraher y M. L. Blanton (Eds.), Algebra in the early grades. Mahwah, NJ: Lawrence Erlbaum Associates.
Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. En A. Coxford (Ed.), The ideas of algebra K-12 (pp. 8-19). Reston, VA: NCTM.
Vergnaud, G. (1988). Long terme et court terme dans l'apprentissage de l'algèbre. En C. Laborde (Ed.), Actes du premier colloque franco-allemand de didactique des mathematiques et de l'informatique (pp. 189-199). Paris: La Pensée Sauvage.
Warren, E. (2001). Algebraic understanding and the importance of operation sense. En M. Heuvel-Penhuizen (Ed.), Proceedings of the 25th conference of the International Group for the Psychology of Mathematics Education, (Vol. 4, pp. 399-406). Utrecht, the Netherlands: Freudenthal Institute.
Warren, E. (2003).Young children's understanding of equals: a longitudinal study. En N. Pateman, G. Dougherty y J. Zilliox (Eds.), Proceedings of the 27th conference of the International Group for the Psychology of Mathematics Education and the 25th conference of Psychology of Mathematics Education North America, (Vol. 4, pp. 379-387). Honolulu: College of Education, University of Hawaii.
Warren, E. (2004). Generalizing arithmetic: Supporting the process in the early years. En M. Johnsen y A. Berit (Eds.), Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education, (Vol. 4, pp. 417-424). Bergen, Norway: Bergen University College.