Enlazando evaluación y aprendizaje: análisis diagnóstico cognitivo de una prueba de español a gran escala
DOI:
https://doi.org/10.30827/portalin.vi40.15930Palabras clave:
Evaluación Diagnóstica Cognitiva, Prueba a gran escala, Español, Aprendizaje Individualizado, LecturaResumen
En el contexto de las pruebas a gran escala, previos estudios han destacado la importancia de la Evaluación Diagnóstica Cognitiva con el propósito de proveer las fortalezas y debilidades de cada alumno. Sin embargo, son escasos los estudios cuyo objetivo es verificar la precisión de los resultados y la viabilidad de enlazarlos con el futuro aprendizaje y enseñanza. Se ha empleado diagnosis cognitiva con el Modelo Generalizado de Entrada Determinista, Ruido y Puerta para analizar el puntaje de 1933 participantes en una prueba nacional de español (EEE). Se han analizado los datos cualitativos de la revisión de literatura en sus borradores de trabajo de grado para corroborar la exactitud de los resultados diagnósticos y su uso para mejorar la lectura académica. Los resultados indican que el modelo se ajusta a la prueba y permite determinar el perfil cognitivo de cada participante, lo que no siempre es viable en los análisis tradicionales de la prueba.
Descargas
Citas
Abu-Alhija, F.N. (2007). Large-scale Testing: Benefits and pitfalls. Studies in Educational Evaluation, 33: 50-68. https://doi.org/10.1016/j.stueduc.2007.01.005.
Brown, D.H. (2000). Principles of Language Learning and Teaching. New York: Longman.
Buck, G. & Tatsuoka, K.K. (1995). Investigation of the linguistic, cognitive and method attributes underlying test task preference: a pilot analysis using rule space methodology. Paper presented at the Language Testing Research Colloquium, Long Beach, CA.
Buck, G., Tatsuoka, K.K. & Kostin, I. (1997). The Subskills of Reading: Rule-space Analysis of a Multiple-choice Test of Second Language Reading Comprehension. Language Learning, 47, 423–466. https://doi.org/10.1111/0023-8333.00016.
Buck, G. & Tatsuoka, K.K. (1998). Application of the rule-space procedure to language testing: examining attributes of a free response listening test. Language Testing, 15(2), 119-157. https://doi.org/10.1177/026553229801500201.
Chen, H. & Chen, J. (2016). Retrofitting Non-cognitive-diagnostic Reading Assessment Under the Generalized DINA Model Framework. Language Assessment Quarterly, 13(3), 218-230. https://doi.org/10.1080/15434303.2016.1210610.
Chin, H., Chew, C., Lim, H.L. & Thien, L.M. (2021). Development and Validation of a Cognitive Diagnostic Assessment with Ordered Multiple-Choice Items for Addition of Time. International Journal of Science and Mathematics Education, (1), 137-157. https://doi.org/10.1007/s10763-021-10170-5.
De la Torre, J. & Douglas, J.A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333-353. https://link.springer.com/article/10.1007/BF02295640.
De la Torre, J. (2008). An Empirically Based Method of Q-Matrix Validation for the DINA Model: Development and Applications. Journal of Educational Measurement, 45(4), 343-362. https://doi.org/10.1111/j.1745-3984.2008.00069.x.
De la Torre, J., Hong, Y. & Deng, W. (2010). Factors Affecting the Item Parameter Estimation and Classification Accuracy of the DINA Model. Journal of Educational Measurement. 47(2), 227-249. https://doi.org/10.1111/j.1745-3984.2010.00110.x.
De la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2): 179-199. https://link.springer.com/article/10.1007/s11336-011-9207-7.
De la Torre, J. & Minchen, N. (2014). Cognitively Diagnostic Assessments and the Cognitive Diagnosis Model Framework. Psicoglogía Educativa, 20, 89-97. https://doi.org/10.1016/j.pse.2014.11.001.
Haertel, E.H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26(4), 301-323. https://doi.org/10.1111/j.1745-3984.2009.00082.x.
Jang, E.E. (2009). Cognitive Diagnostic Assessment of L2 Reading Comprehension Ability: Validity Arguments for Fusion Model Application to LanguEdge Assessment. Language Testing, 26(1), 31-73. https://doi.org/10.1177/0265532208097336.
Kim, A. (2015). Exploring ways to provide diagnostic feedback with an ESL placement test: Cognitive diagnostic assessment of L2 reading ability. Language Testing, 32(2), 227-258. https://doi.org/10.1177/0265532214558457.
Lee, Y. & Sawaki, Y. (2009). Cognitive Diagnosis Approaches to Language Assessment: An Overview. Language Assessment Quarterly, 6, 172-189. https://doi.org/10.1177/0265532214558457.
Li, H. & Suen, H. K. (2013). Constructing and Validating a Q-matrix for Cognitive Diagnostic Analyses of a Reading Test. Educational Assessment, 18(1), 1-25. https://doi.org/10.1080/10627197.2013.761522.
Li, H., Hunter, V.C. & Lei, P (2016). The Selection of Cognitive Diagnostic Models for a Reading Comprehension Test. Language testing, 33(3), 391-409. https://doi.org/10.1177/0265532215590848.
Min, S.& He, L.(2021). Developing individualized feedback for listening assessment: Combining standard setting and cognitive diagnostic assessment approaches. Language Testing, 38(1), 1-27. https://doi.org/10.1177/0265532221995475.
Mislevy, R.J. (1989). Foundations of a new test theory. Educational Testing Service.
National Advisory Committee for Foreign Language Teaching. (1998). National College Spanish Teaching Syllabus for Spanish Majors. Shanghai: Shanghai Foreign Language Education Press.
Ranjbaran, F. & Alavi, S.M.(2017). Developing a reading comprehension test for cognitive diagnostic assessment: A RUM analysis. Studies In Educational Evaluation, 55, 167-179. https://doi.org/10.1016/j.stueduc.2017.10.007.
Sawaki, Y., Kim, H. & Gentile, C. (2009). Q-matrix Construction: Defining the Link between Constructs and Test Items in Large-scale Reading and Listening Comprehension Assessments. Language Assessment Quarterly, 6, 190–209. https://doi.org/10.1080/15434300902801917.
Tatsuoka, K.K. (1983). Rule-space: An approach for Dealing with Misconceptions Based on Item Response Theory. Journal of Educational Measurement, 20(4), 345-354. https://doi.org/10.1111/j.1745-3984.1983.tb00212.x.
Tuprak, T. E. & Cakir, A. (2021). Examining the L2 Reading Comprehension Ability of Adult ELLs: Developing a Diagnostic Test within the Cognitive Diagnostic Assessment Framework. Language Testing, 38(1): 106-131. https://doi.org/10.1177/0265532220941470.
Von Davier, M. (2005). A General Diagnostic Model Applied to Language Testing Data (ETS Research Rep. No. RR-05-16). Princeton, NJ: Educational Testing Service.
Wang, W. & Qiu, X. (2019). Multilevel Modeling of Cognitive Diagnostic Assessment: The Multilevel DINA Example. Applied Psychological Measurement, 43(1), 34-50. https://doi.org/10.1177/0146621618765713.
Wu, X. Wu, R. Chang, H. Kong, Q. & Zhang, Y. (2020). International Comparative Study on PISA Mathematics Achievement Test Based on Cognitive Diagnostic Models. Frontiers in Psychology. 11,1-13. https://doi.org/10.3389/fpsyg.2020.02230.
Yi, Y. (2017). Probing the Relative Importance of Different Attributes in L2 Reading and Listening Comprehension Items: An Application of Cognitive Diagnostic Model. Language Testing, 34(3), 337-355. https://doi.org/10.1177/0265532216646141.
Zheng, S. & Liu, Y. (2015). A study of Spanish Education in Colleges and Universities in China. Beijing: Foreign Language Teaching and Research Press.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).