Diagrammatic thinking: Notes on Peirce’s semiotics and epistemology

Autores

  • Luis Radford Université Laurentienne, Canadá

DOI:

https://doi.org/10.30827/pna.v3i1.6192

Palavras-chave:

Cultura, Kant, Peirce, Percepción, Pensamiento diagramático, Semiótica

Resumo


In this paper, I discuss the role of diagrammatic thinking within the larger context of cognitive activity as framed by Peirce’s semiotic theory of and its underpinning realistic ontology. After a short overview of Kant’s scepticism in its historical context, I examine Peirce’s attempt to rescue perception as a way to reconceptualize the Kantian “manifold of senses”. I argue that Peirce’s redemption of perception led him to a series of problems that are as fundamental as those that Kant encountered. I contend that the understanding of the difficulties of Peirce’s epistemology allows us to better grasp the limits and possibilities of diagrammatic thinking.

Pensamiento diagramático: notas sobre la semiótica y la epistemología de Peirce

En este artículo se discute el papel que desempeña el concepto de pensamiento diagramático en el contexto de la actividad cognitiva, tal y como es concebida dentro del marco de la teoría semiótica de Peirce y su subyacente ontología realista. Luego de presentar una visión general del escepticismo kantiano en su contexto histórico, se examina el esfuerzo de Peirce por rescatar la percepción, esfuerzo que lo lleva a indagar de manera innovadora el “multiespacio de los sentidos” del que hablaba Kant. Se mantiene que este esfuerzo lleva a Peirce a una serie de problemas que son tan fundamentales como los que Kant encontró en su propio itinerario epistemológico. Se sostiene que la comprensión de las dificultades intrínsecas a la epistemología de Peirce nos permite cernir mejor los límites y posibilidades de su pensamiento diagramático.

Handle: http://hdl.handle.net/10481/4217

Nº de citas en WOS (2017): 4 (Citas de 2º orden, 10)

Nº de citas en SCOPUS (2017): 2 (Citas de 2º orden, 10)

Downloads

Não há dados estatísticos.

Biografia Autor

Luis Radford, Université Laurentienne, Canadá

Código ORCID ResearcherID

Referências

Adorno, T. W. (2001). Kant's critique of pure reason. Stanford: Stanford University Press.

Allison, H. (1973). The Kant-Eberhard controversy. Baltimore: Johns Hopkins University Press.

Arendt, H. (1958). The human condition. Chicago: The University of Chicago Press.

Colapietro, V., Midtgarden, T., & Strand, T. (2005). Introduction: Peirce and education: The conflicting processes of learning and discovery. Studies in Philosophy and Education, 24(3-4), 167-177. DOI: https://doi.org/10.1007/s11217-005-3842-3

De Tienne, A. (1993). [Hypotheses of space and time: A response to Kant] Charles S. Peirce, Appendix No. 2. Transactions of the Charles S. Peirce Society, 29(4), 637-673.

Eco, U. (1999). Kant and the Platypus. Essays on language and cognition. San Diego: Harcourt, Inc.

Eisle, C. (1979). Studies in the scientific and mathematical philosophy of Charles S. Peirce (Edited by R. M. Martin). The Hague: Mouton.

Floridi, L. (1994). Scepticism and the search for knowledge: a Peirceish answer to a Kantian doubt. Transactions of the Charles S. Peirce Society, 30(3), 543-573. DOI: https://doi.org/10.2139/ssrn.3853525

Hjelmslev, L. (1969). Prolegomena to a theory of language. Wisconsin: The University of Wisconsin Press.

Hoffmann, M. H. G. (2002). Peirce's “Diagrammatic Reasoning” as a solution of the learning paradox. In G. Debrock (Ed.), The quiet revolution: Essays on process pragmatism (pp. 147-174). Amsterdam: Rodopi Press.

Hoopes, J. (Ed.). (1991). Peirce on signs. Chapel Hill and London: The University of North Carolina Press.

Kant, I. (1929). Critique of pure reason. (Norman K. Smith, Trans.). New York: St. Marin's Press. (Original work published 1781 and 1787)

Kant, I. (1959). Prolegomena to any future metaphysics that will be able to present itself as a science. (Peter G. Lucas, Trans.). Manchester: Manchester University Press. (Original work published 1783)

Lektorsky, V. A. (1984). Subject, object, cognition. Moscow: Progress Publisher.

Nesher, D. (1997). Peircean realism: Truth as the meaning of cognitive signs representing external reality. Transactions of the Charles S. Peirce Society, 33(1), 201-257.

Netz, R. (1999). The shaping of deduction in Greek mathematics. Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511543296

Parker, K. (1994). Peirce's semiotic and ontology. Transactions of the Charles S. Peirce Society, 30(1), 51-75.

Pea, R. D. (1993). Practices of distributed intelligence and designs for education. In G. Salomon (Ed.), Distributed cognitions (pp. 47-87). Cambridge: Cambridge University Press.

Peirce, C. S. (1931-1958). Collected Papers (Vols. 1-8). Cambridge: Harvard University Press.

Peirce, C. S. (1976). The New Elements of Mathematics (NEM). (C. Eisele, Ed.). The Hague: Mouton Publishers.

Radford, L. (2002a). The object of representations: Between wisdom and certainty. In F. Hitt (Ed.), Representations and mathematics visualization (219-240). Mexico: Departamento de Matemática Educativa CINVESTAV-IPN.

Radford, L. (2002b). The seen, the spoken and the written. A semiotic approach to the problem of objectification of mathematical knowledge. For the Learning of Mathematics, 22(2), 14-23.

Radford, L. (2003a). Gestures, speech and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37-70. DOI: https://doi.org/10.1207/S15327833MTL0501_02

Radford, L. (2003b). On the epistemological limits of language. Mathematical knowledge and social practice during the Renaissance. Educational Studies in Mathematics, 52(2), 123-150. DOI: https://doi.org/10.1023/A:1024029808871

Radford, L. (2003c). On Culture and Mind. A post-Vygotskian semiotic perspective, with an example from Greek mathematical thought. In M. Anderson, A. Sáenz-Ludlow, S. Zellweger, & V. V. Cifarelly (Eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 49-79). Ottawa: Legas Publishing.

Radford, L. (2008). Culture and cognition: Towards an anthropology of mathematical thinking. In L. English (Ed.), Handbook of international research in mathematics education (2nd Ed.). Mahwah: Erlbaum.

Rosenthal, S. (2001). Firstness and the collapse of universals. In Digital Encyclopedia of Charles S. Peirce. Retrieved on June 2003, from http://www.digitalpeirce.org/

Stjernfelt, F. (2000). Diagrams as centerpiece of a Peircean epistemology. Transactions of the Charles S. Peirce Society, 36(3), 357-384.

Thellefsen, T. L (n/d). Firstness and thirdness displacement - The epistemology of Peirce's three sign trichotomies. In Digital Encyclopedia of Charles S. Peirce. Retrieved on June 2003, from http://www.digitalpeirce.org/

Voloshinov, V. N. (1973). Marxism and the philosophy of language. Cambridge: Harvard University Press.

Downloads

Publicado

2008-09-01

Edição

Secção

Artículos