Digital technology in mathematics education: why it works (or doesn’t)

Autores

  • Paul Drijvers Freudenthal Institute for Science and Mathematics Education Utrecht University, Holanda

DOI:

https://doi.org/10.30827/pna.v8i1.6120

Palavras-chave:

Función didáctica, Instrumentación, Tecnología digital

Resumo

The integration of digital technology confronts teachers, educators and researchers with many questions. What is the potential of ICT for learning and teaching, and which factors are decisive in making it work in the mathematics classroom? To investigate these questions, six cases from leading studies in the field are described, and decisive success factors are identified. This leads to the conclusion that crucial factors for the success of digital technology in mathematics education include the design of the digital tool and corresponding tasks exploiting the tool’s pedagogical potential, the role of the teacher and the educational context.

La tecnología digital en educación matemática: por qué funciona (o no)

La integración de la tecnología digital enfrenta a profesores, formadores de profesores e investigadores a muchas preguntas. ¿Cuál es el potencial de las TIC en el aprendizaje y la enseñanza, y qué factores son determinantes al trabajar en clase de matemáticas? Para investigar estas cuestiones, se describen seis casos de estudio prominentes en el área, y se identifican los factores decisivos para el éxito. Esto lleva a la conclusión de que los factores cruciales para el éxito de la tecnología digital en la educación matemática incluyen el diseño de la herramienta digital y de las tareas apropiadas que exploren el potencial pedagógico de la herramienta, el papel del profesor y el contexto educativo.

Handle: http://hdl.handle.net/10481/27880

Nº de citas en WOS (2017): 2 (Citas de 2º orden, 1)

Downloads

Não há dados estatísticos.

Biografia Autor

Paul Drijvers, Freudenthal Institute for Science and Mathematics Education Utrecht University, Holanda

Referências

Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245-274.

Bakker, A. (2004). Design research in statistics education: on symbolizing and computer tools. Utrecht, The Netherlands: CD Bèta Press.

Bakker, A., & Gravemeijer, K. P. E. (2006). An historical phenomenology of mean and median. Educational Studies in Mathematics, 62(2), 149-168.

Bakker, A., & Hoffmann, M. H. G. (2005). Diagrammatic reasoning as the basis for developing concepts: semiotic analysis of students' learning about statistical distribution. Educational Studies in Mathematics, 60(3), 333-358.

Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking of theoriesØan approach for exploiting the diversity of theoretical approaches. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 483-506). New York, NY: Springer.

Bokhove, C. (2011). Use of ICT for acquiring, practicing and assessing algebraic expertise. Utrecht, The Netherlands: CD-Bèta press.

Bokhove, C., & Drijvers, P. (2012). Effects of a digital intervention on the development of algebraic expertise. Computers & Education, 58(1), 197-208.

Boon, P. (2009). A designer speaks: Designing educational software for 3D geometry. Educational Designer, 1(2). Retrieved from http://www.educational designer.org/ed/volume1/issue2/article7/

Burrill, G., Allison, J., Breaux, G., Kastberg, S., Leatham, K., & Sanchez, W. (Eds.). (2002). Handheld graphing technology in secondary mathematics: research findings and implications for classroom practice. Dallas, TX: Texas Instruments.

Cobb, P., McClain, K., & Gravemeijer, K. (2003). Learning about statistical covariation. Cognition and Instruction, 21(1), 1-78.

Daher, W. (2010). Building mathematical knowledge in an authentic mobile phone environment. Australasian Journal of Educational Technology, 26(1), 85-104.

Doerr, H. M., & Zangor, R. (2000). Creating meaning for and with the graphing calculator. Educational Studies in Mathematics, 41(2), 143-163.

Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and the development of the function concept: from repeated calculations to functional thinking. International Journal of Science and Mathematics Education, 10(6), 1243-1267.

Doorman, M., Drijvers, P., & Kindt, M. (1994). De grafische rekenmachine in het wiskundeonderwijs [The graphic calculator in mathematics education]. Utrecht, The Netherlands: CD-Bèta press.

Drijvers, P. (2003). Learning algebra in a computer algebra environment. Design research on the understanding of the concept of parameter. Unpublished doctoral dissertation. Utrecht, The Netherlands: Freudenthal Institute. Retrieved from http://www.fi.uu.nl/~pauld/ dissertation.

Drijvers, P. (2012). Teachers transforming resources into orchestrations. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to “lived” resources: mathematics curriculum materials and teacher development (pp. 265-281). New York, NY/Berlin, Germany: Springer.

Drijvers, P., Boon, P., & Van Reeuwijk (2010). Algebra and technology. In P. Drijvers (Ed.), Secondary algebra education. Revisiting topics and themes and exploring the unknown (pp. 179-202). Rotterdam, The Netherlands: Sense.

Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213-234.

Drijvers, P., Godino, J. D., Font, D., & Trouche, L. (2012). One episode, two lenses. A reflective analysis of student learning with computer algebra from instrumental and onto-semiotic perspectives. Educational Studies in Mathematics, 82(1), 23-49.

Drijvers, P., & Trouche, L. (2008). From artifacts to instruments: a theoretical framework behind the orchestra metaphor. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics: Volume 2. Cases and perspectives (pp. 363-392). Charlotte, NC: Information Age.

Freudenthal, H. (1991). Revisiting mathematics education. China lectures. Dordrecht, The Netherlands: Kluwer.

Fuglestad, A. B. (2007). Teaching and teachers' competence with ICT in mathematics in a community of inquiry. In T. Y. Tso (Ed.), Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 249-258). Seoul, Korea: PME.

Graham, C. R. (2011). Theoretical considerations for understanding technological pedagogical content knowledge (TPACK). Computers & Education, 57(3), 1953-1960.

Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199-218.

Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments. The case of calculators. The International Journal of Computers for Mathematical Learning, 3(3), 195-227.

Heid, M. K. (1988). Resequencing skills and concepts in applied calculus using the computer as a tool. Journal for Research in Mathematics Education, 19(1), 3-25.

Hoyles, C., & Lagrange, J.-B. (Eds.). (2010). Mathematics education and technologyØ Rethinking the terrain. New York, NY/Berlin, Germany: Springer.

Jaworski B. (2006). Theory and practice in mathematics teaching development: critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher Education, 9(2), 187-211.

Kieran, C., & Drijvers, P. (2006). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: a study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11(2), 205-263.

Kieran, C., & Drijvers, P. (2012, May). The didactical triad of theoretical framework, mathematical topic, and digital tool in research on learning and teaching. Paper presented at the Colloque Hommage à Michèle Artigue, Paris, France. Retrieved from https://docs.google.com/file/d/0B7H9DyVUr481 Mk40WFhSd0FwdXc/edit?pli=1

Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the development of teacher knowledge in a design seminar: Integrating content, pedagogy and technology. Computers & Education, 49, 740-762.

Lagrange, J.-B. (2000). L'intégration d'instruments informatiques dans l'enseignement: une approche par les techniques. Educational Studies in Mathematics, 43(1), 1-30.

Monaghan, J. (2005, October). Computer algebra, instrumentation and the anthropological approach. Paper Presented at the 4th CAME Conference, Virginia, VA. Retrieved from http://www.lkl.ac.uk/research/came/events/CAME 4 /index.html.

National Council of Teachers of Mathematics. (2008). The role of technology in the teaching and learning of mathematics. Retrieved from http://www.nctm.org/uploadedFiles/About_NCTM/Position_Statements/Technology%20final.pdf

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York, NY: Basic Books.

Pea, R. (1987). Cognitive technologies for mathematics education. In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 89-122). Hillsdale, NJ: Lawrence Erlbaum.

Peirce, C. S. (1931-1935). Collected Papers of Charles Sanders Peirce. Cambridge, MA: Harvard University Press.

Pierce, R., & Ball, L. (2009). Perceptions that may affect teachers' intention to use technology in secondary mathematics classes. Educational Studies in Mathematics, 71(3), 299-317.

Pierce, R., & Stacey, K. (2010). Mapping pedagogical opportunities provided by mathematics analysis software. Technology, Knowledge and Learning, 15(1), 1-20.

Prensky, M. (2001). Digital game-based learning. New York, NY: McGraw-Hill.

Ruthven, K. (2007). Teachers, technologies and the structures of schooling. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the V Congress of the European Society for Research in Mathematics Education CERME5 (pp. 52-67). Larnaca, Cyprus: University of Cyprus.

Ruthven, K. & Hennessy, S. (2002). A practitioner model of the use of computer-based tools and resources to support mathematics teaching and learning. Educational Studies in Mathematics, 49(1), 47-88.

Sabra, H. (2011). Contribution à l'étude du travail documentaire des enseignants de mathématiques: les incidents comme révélateurs des rapports entre documentations individuelle et communautaire. [Contribution to the study of documentary work of mathematics teachers: incidents as indicators of relations between individual and collective documentation.] Unpublished doctoral dissertation. Lyon, France: Université Claude Bernard Lyon 1.

Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding students' command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281-307.

Trouche, L., & Drijvers, P. (2010). Handheld technology: flashback into the future. ZDM, The International Journal on Mathematics Education, 42(7), 667-681.

Voogt, J., Fisser, P., Pareja Roblin, N., Tondeur, J., & Van Braak, J. (2013). Technological pedagogical content knowledgeØa review of the literature. Journal of Computer Assisted Learning, 29(2), 109-121.

Wenger, E. (1998). Communities of practice: learning, meaning, and identity. New York, NY: Cambridge University Press.

Wijers, M., Jonker, V., & Drijvers, P. (2010). MobileMath: exploring mathematics outside the classroom. ZDM, The International Journal on Mathematics Education, 42(7), 789-799.

Downloads

Publicado

2013-09-01

Edição

Secção

Artículos