Mathematical connections associated with first order ordinary differential equations
DOI:
https://doi.org/10.30827/pna.v17i1.23748Keywords:
Differential equation, Mathematical connections, Mathematics EducationAbstract
This paper shows the mathematical connections that university students make when solving tasks involving first-order Ordinary Differential Equations. We consider mathematical connections as a process by which a person relates one or more ideas, concepts, representations, theorems, or meanings to each other, to those in other disciplines or to real-life situations. For data collection, task-based interviews were used, which were analyzed with the Thematic Analysis method. The results indicate the use of seven types of mathematical connections: different representations, procedural, meaning, characteristic, part-whole, implication and reversibility. However, it was observed that a high academic performance is not an indicator that the connections emerge adequately in the resolution of tasks.
Downloads
References
Arslan, S. (2010). Traditional instruction of differential equations and conceptual learning. Teaching Mathematics and its Applications: An International Journal of the IMA, 29(2), 94-107. https://doi.org/10.1093/teamat/hrq001 DOI: https://doi.org/10.1093/teamat/hrq001
Barmby, P., Harries, T., Higgins, S. y Suggate, J. (2009). The array representation and primary children’s understanding and reasoning in multiplication. Educational Studies in Mathematics, 70, 217-241. https://doi.org/10.1007/s10649-008-9145-1 DOI: https://doi.org/10.1007/s10649-008-9145-1
Bingölbali, E. y Coşkun, M. (2016). A proposed conceptual framework for enhancing the use of making connections skill in mathematics teaching. Education and Science, 41(183), 233-249. https://doi.org/10.15390/EB.2016.4764 DOI: https://doi.org/10.15390/EB.2016.4764
Braun, V. y Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. http://dx.doi.org/10.1191/1478088706qp063oa DOI: https://doi.org/10.1191/1478088706qp063oa
Braun, V. y Clarke, V. (2012). Thematic analysis. En H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf y K. J. Sher (Eds.), APA Handbook of Research Methods in Psychology, Vol 2: Research Designs: Quantitative, Qualitative, Neuropsychological, and Biological (pp. 57-71). American Psychological Association. https://doi.org/10.1037/13620-004 DOI: https://doi.org/10.1037/13620-004
Brown, L. (Ed.). (1993). The new shorter Oxford English dictionary on historical principles. Clarendon Press.
Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections (tesis doctoral no publicada). Simon Fraser University, Canadá.
Coxford, A. F. (1995). The case for connections. En P. A. House y A. F. Coxford (Eds.), Connecting mathematics across the curriculum (pp. 3-12). National Council of Teachers of Mathematics.
De Gamboa, G. y Figueiras, L. (2014). Conexiones en el conocimiento matemático del profesor: propuesta de un modelo de análisis. En M. T. González, M. Codes, D. Arnau y T. Ortega (Eds.), Investigación en Educación Matemática XVIII (pp. 337-344). SEIEM.
Eli, J. A., Mohr-Schroeder, M. J. y Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23, 297-319. https://doi.org/10.1007/s13394-011-0017-0 DOI: https://doi.org/10.1007/s13394-011-0017-0
Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula (tesis doctoral no publicada). Pennsylvania State University College of Education, Estados Unidos de América.
García, J. (2018). Conexiones matemáticas y concepciones alternativas a la derivada y a la integral en los estudiantes del preuniversitario (tesis doctoral no publicada). Universidad Autónoma de Guerrero, México.
García-García, J. y Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080/0020739X.2017.1355994 DOI: https://doi.org/10.1080/0020739X.2017.1355994
García-García, J. y Dolores-Flores, C. (2021). Exploring pre-university students’ mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, 52(6), 912-936. https://doi.org/10.1080/0020739x.2020.1729429 DOI: https://doi.org/10.1080/0020739X.2020.1729429
Godino, J. D., Batanero, C. y Font, V. (2003). Fundamentos de la enseñanza y el aprendizaje de las matemáticas para maestros. Universidad de Granada.
Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. En A. E. Kelly y R. A. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education (pp. 517-545). Lawrence Erlbaum Associates.
Guerrero, C., Camacho, M. y Mejía, H. R. (2010). Dificultades de los estudiantes en la interpretación de las soluciones de ecuaciones diferenciales ordinarias que modelan un problema. Enseñanza de Las Ciencias, 28(3), 341-352. https://doi.org/10.5565/rev/ec/v28n3.431 DOI: https://doi.org/10.5565/rev/ec/v28n3.431
Karakoç, G. y Alacacı, C. (2015). Real World Connections in High School Mathematics Curriculum and Teaching. Turkish Journal of Computer and Mathematics Education, 6(1), 31-46. DOI: https://doi.org/10.16949/turcomat.76099
Lee, J. E. (2012). Prospective elementary teachers’ perceptions of real-life connections reflected in posing and evaluating story problems. Journal of Mathematics Teacher Education, 15(6), 429-452. https://doi.org/10.1007/s10857-012-9220-5 DOI: https://doi.org/10.1007/s10857-012-9220-5
Merriam, S. B. y Tisdell, E. J. (2016) Qualitative research: A guide to design and implementation (4.ª ed.). Jossey-Bass.
Mhlolo, M. K. (2012). Mathematical connections of a higher cognitive level: A tool we may use to identify these in practice. African Journal of Research in Mathematics, Science and Technology Education, 16(2), 176-191. https://doi.org/10.1080/10288457.2012.10740738 DOI: https://doi.org/10.1080/10288457.2012.10740738
Mhlolo, M. K., Venkat, H. y Schäfer, M. (2012). The nature and quality of the mathematical connections teachers make. Pythagoras, 33(1), 1-9. https://doi.org/10.4102/pythagoras.v33i1.22 DOI: https://doi.org/10.4102/pythagoras.v33i1.22
Mousley, J. (2004). An aspect of mathematical understanding: the notion of "connected knowing". En M. J. Hoines y A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 377-384). Bergen University College.
Mumcu, H. Y. (2018). A theoretical examination of the mathematical connection skill: The case of the concept of derivative. Turkish Journal of Computer and Mathematics Education, 9(2), 211-248.
Özgen, K. (2013). Self-Efficacy Beliefs in Mathematical Literacy and Connections Between Mathematics and Real World: The Case of High School Students. Journal of International Education Research, 9(4), 305-316. https://doi.org/10.19030/jier.v9i4.8082 DOI: https://doi.org/10.19030/jier.v9i4.8082
Perdomo, J. (2011). Construcción del concepto de Ecuación Diferencial Ordinaria en escenarios de Resolución de Problemas. Enseñanza de las Ciencias, 29(3), 464. https://doi.org/10.5565/rev/ec/v29n3.650 DOI: https://doi.org/10.5565/rev/ec/v29n3.650
Rodríguez, G., Gil, J. y García, E. (1999). Metodología de la investigación cualitativa. Aljibe.
Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M. y García-García, J. (2021). Exploring University Mexican Students Quality of Intra-Mathematical Connections When Solving Tasks About Derivate Concept. EURASIA Journal of Mathematics, Science and Technology Education, 17(9), em2006. https://doi.org/10.29333/ejmste/11160 DOI: https://doi.org/10.29333/ejmste/11160
Rowland, D. R. y Jovanoski, Z. (2004). Student interpretations of the terms in first-order ordinary differential equations in modelling contexts. International Journal of Mathematical Education in Science and Technology, 35(4), 503-516. https://doi.org/10.1080/00207390410001686607 DOI: https://doi.org/10.1080/00207390410001686607
Serrano-Gómez, W. (2005). El significado de los objetos en el aula. Revista de Pedagogía, 26(75), 131-164.
Silver, E. A., Mesa, V. M., Morris, K. A., Star, J. R. y Benken, B. M. (2009). Teaching Mathematics for Understanding: An Analysis of Lessons Submitted by Teachers Seeking NBPTS Certification. American Educational Research Journal, 46(2), 501-531. https://doi.org/10.3102/0002831208326559 DOI: https://doi.org/10.3102/0002831208326559
Stake, R. E. (1995). The art of case study research. Sage Publications.
Umay, A. (2007). The New Face of Our Old Friend School Mathematics. Aydan Web Tesisleri.
Zill, D. y Cullen, M. (2009). Ecuaciones Diferenciales con problemas con valores en la frontera. (7.ª ed.). Cengage Learning.
Zill, D. y Wright, W. (2015). Ecuaciones Diferenciales con problemas con valores en la frontera. (8.ª ed.). Cengage Learning.