A study on the changes on teachers’ knowledge and beliefs after a workshop based on mathematics education software, by relying on fuzzy method
DOI:
https://doi.org/10.30827/pna.v13i1.6593Palabras clave:
Análisis Fuzzy, Conocimiento tecnológico pedagógico del contenido (TPACK), Creencias de los docentes, Geogebra, GeometríaResumen
In this paper, the effect of holding a math training workshop using GeoGebra software has been studied on the changes on teachers' knowledge and beliefs . The selected sample is 40 male and female teachers in Iran. Before and after the intervention were administered a pre and post questionnaire with two components: TPACK knowledge and teachers’ beliefs. Fuzzy logic and Fuzzy TOPSIS methods were used to analyze the data. The results of this method showed a significant difference between the results before and after the workshop.
Un estudio de los cambios en el conocimiento y creencias de docentes, después de un taller con software educativo matemático, analizado mediante el método Fuzzy
El estudio contempla el efecto de un taller de matemáticas con GeoGebra sobre los cambios en el conocimiento y las creencias de los docentes. La muestra seleccionada considera 40 docentes en Irán. Se administró un cuestionario, antes y después de la intervención, enfocado en dos componentes: el TPACK y las creencias. Los datos se analizaron aplicando herramientas del método Fuzzy mediante el cual se evidencia una diferencia significativa entre los resultados antes y después del taller.
Descargas
Citas
Aghazadeh, M. (2009). New Methods of Teaching. Tehran: Aiizh Publication.
Arzarello, F., Olivero, F., Paolo, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. ZDM, 34(3), 66–72.
Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.
Dubinsky, E., & Schwingendorf, K. (2004). Calculus, Concepts, Computers and Cooperative Learning (C4L), The Purdue Calculus Reform Project, 2004.
Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: Theory and Applications. Academic Press.
Güneş, E., & Bahçivan, E. (2016). A Multiple Case Study of Preservice Science Teachers’ TPACK: Embedded in a Comprehensive Belief System. International Journal Of Environmental & Science Education, 11 (15), 8040-8054.
Hardy, B, & Lanan. K. (2006). Domain Specificity of Personal Epistemology: Resolved Questions, Persistent Issues, New Models Psychology Department. International Journal of Educational Research, 45(1-2), 85-95.
Healy, L., & Hoyles, C. (2002). Software tools for geometrical problem solving: potential and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235–256.
Hoang, N. T. (2015). EFL teachers’ perceptions and experiences of blended learning in a Vietnamese university. Professional Doctorate thesis, Queensland University of Technology. Retrieved from http://eprInts.qu t.edu.au/83945/.
Hofer, B. K. & Pintrich, P. R. (1997). The Development of Epistemological Theories: Beliefs About Knowledge And Knowing And Their Relation To Learning. Review Of Educational Research, (67), 88-140.
Hofer, B. K. (2001). Personal Epistemology Research: Implications for Learning and Teaching. Educational Psychology Review, 13(4), 353-383.
Hohenwarter, M. & Preiner, J. (2007). Dynamic mathematics with GeoGebra, Journal of Online Mathematics and its Applications, 7, ID 1448,
Karami, M, Karami, Z, Attaran, M. (2012). Developing student-teacher students’ content knowledge and teaching skills through a model of integrating problem-based learning with information and communication technology. Information & Communication Technology in Educational Sciences Quarterly. 2(3), 151-173.
McAnear, A. (2009). Effective technology integration. Learning & leading with technology, 36 (7), 5.
Martin, M. O., Mullis, I. V. S., Foy, P., Stanco, G. M. (2012). TIMSS 2011 International Results in Science. Chestnut Hill, MA: Lynch School of Education, Boston College.
Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A new framework for teacher knowledge. Teachers College Record, 108 (6), 1017-1054.
Prusak, N., Hershkowitz, R., & Schwarz, B. B. (2012). From visual reasoning to logical necessity through argumentative design, Educational Studies in Mathematics, 79(1), 19-40.
Ruthven, K., & Hennessy, S. (2002). A Practitioner Model of the Use of Computer-Based Toolsand Resources to Support Mathematics Teaching and Learning, Educational Studies in Mathematics, 49(1), 47-88.
Shabani, M. (2011). Modern Methods and models of teaching. Tehran: Samt Publication.
Smith, R.C., Kim, S., & McIntyre, L. (2016). Relationships Between Prospective Middle Grades Mathematics Teachers’ Beliefs and TPACK. Canadian Journal of Science, Mathematics and Technology Education, 16 (4), 359-373.
Wang, T. (2015). Rethinking teaching with information and communication technologies (ICTs) in architectural education. Teaching and Teacher Education, 25 (8), 1132–1140.
Zambak, V. (2014). Pre-service mathematics teachers’ knowledge development and belief change within a technology enhanced mathematics course, All Dissertations, Paper 1427.
Zimmermann, H.J. (1985). Fuzzy set theory and its applications, Kluwer, Dorecht.