Missing value and comparison problems: What pupils know before the teaching of proportion
DOI:
https://doi.org/10.30827/pna.v6i3.6142Palabras clave:
Dificultades, Estrategias, Problemas de comparación, Problemas de proporción, Problemas de valor ausente, Procesos de pensamientoResumen
This paper analyses grade 6 pupils’ mathematical processes and difficulties in solving proportion problems before the formal teaching of this topic. Using a qualitative methodology, we examine pupils’ thinking processes at four levels of performance in missing value and comparison problems. The results show that pupils tend to use scalar composition and decomposition strategies in missing value problems and functional strategies in comparison problems. Pupils’ difficulties are related to a lack of recognition of the multiplicative nature of proportion relationships.
Problemas de valor ausente y de comparación: qué saben los alumnos antes de la enseñanza de la proporción
Handle: http://hdl.handle.net/ 10481/19500
Nº de citas en SCOPUS (2017): 2 (Citas de 2º orden, 1)
Descargas
Citas
Bowers, J., Nickerson, S., & Kenehan, G. (2002). Using technology to teach concepts of speed. In B. Litwiller & G. Bright (Eds.), Making sense of fractions, ratios and proportions (pp. 176-187). Reston, VA: NCTM.
Christou, C., & Philippou, G. (2002). Mapping and development of intuitive proportional thinking. Journal of Mathematical Behavior, 20(3), 321-336.
Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and proportion: research implications. In D. Owens (Ed.), Research ideas for the classroom (pp. 159-178). New York, NY: Macmillan.
Denzin, N. K., & Lincoln, Y. S. (1994). Introduction: Entering the field of qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 1-17). London, United Kingdom: Sage.
Hart, K. (1984). Ratio: children's strategies and errors. London, United Kingdom: NFER-Nelson.
Lamon, S. (1993). Ratio and proportion: Connecting content and children's thinking. Journal for Research in Mathematics Education, 24(1), 41-61.
Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. In M. Behr & J. Hiebert (Eds.), Number concepts and operations for the middle grades (pp. 93-118). Hillsdale, NJ: LEA.
Post, T., Behr, M., & Lesh, R. (1988). Proportionality and the development of prealgebra understandings. In A. Coxford (Ed.), Algebraic concepts in the curriculum K-12. 1988 Yearbook (pp. 78-90). Reston, VA: NCTM.
Stanley, D., McGowan, D., & Hull, S. H. (2003). Pitfalls of over-reliance on cross multiplication as a method to find missing values. Texas Mathematics Teacher, 11(1), 9-11.
Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is proportional: effects of age and problem type on propensities for overgeneralization. Cognition and Instruction, 23(1), 57-86.
Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 127-174). New York, NY: Academic Press.