Desarrollo de un marco para evaluar la comprensión del estudiante en la generalización de patrones figurativos

Autores/as

DOI:

https://doi.org/10.30827/pna.v18i1.16566

Palabras clave:

Generalización de patrones figurativos, Marco de desarrollo, Representación de estructuras, Teoría APOS

Resumen

Los patrones figurativos tienen una capacidad única para promover el pensamiento funcional. Este estudio tuvo como objetivo identificar las construcciones mentales de los estudiantes de 7º grado en Generalización de Patrones Figurativos (FPG) mediante el uso de la teoría de Acción, Proceso, Objeto y Esquema (APOS) para desarrollar un marco para evaluar la comprensión de la FPG. Una muestra de 220 estudiantes completó una prueba diseñada en el marco APOS y 19 estudiantes participaron en una entrevista semiestructurada. Los resultados mostraron que existen niveles de acción emergentes y parciales antes de la etapa de acción y niveles de proceso/objeto pre, emergentes y parciales antes de la etapa de proceso/objeto.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Nasim Asghary, Central Tehran Branch, Islamic Azad University, Iran

Assistant Professor in Mathematics and statistics Department in Islamic Azad University, central Tehran branch.

Robabeh Afkhami, Central Tehran Branch, Islamic Azad University, Iran

Phd. student in Mathematics and statistics Department in Islamic Azad University, central Tehran branch.

Citas

Arnon, I. (1998). In the Mind's Eye: How Children Develop Mathematical Concepts -Extending Piaget's Theory- the Case of Fractions in Grade Four (Dissertation). Haifa, University of Haifa, Israel.

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS Theory: A framework for research and curriculum development in the mathematics education. Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4614-7966-6

Baker, B., Cooley, L., & Trigueros, M. (2000). The schema triad—a calculus example. Journal for Research in Mathematics Education, 31, 557-578. DOI: https://doi.org/10.2307/749887

Blanton, M. L. & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. ZDM-International Reviews on Mathematical education, 37(1), 34-42. https://doi.org/10.1007/BF02655895 DOI: https://doi.org/10.1007/BF02655895

Carraher, D. W. & Schliemann, A. D. (2019). Early algebraic thinking and the US mathematics standards for grades K to 5. Infancia y Aprendizaje, 42(3), 479-522. https://doi.org/10.1080/02103702.2019.1638570 DOI: https://doi.org/10.1080/02103702.2019.1638570

Chua, B. L. (2009). Features of generalising task: Help or hurdle to expressing generality? Australian Mathematics Teacher, 65(2), 18-24.

Chua, B. L. & Hoyles, C. (2012). The effect of different pattern formats on secondary two students’ ability to generalise. In T. Y. Tso, (Ed.), Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 155-162). PME.

Chua, B. L. & Hoyles, C. (2014). Modalities of rules and generalizing strategies of year 8 students for a quadratic pattern. In C. Nicol, P. Liljedahl, S. Oesterle, & D. Allan (Eds.) Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (pp.305-312). PME.

Copley, J. V. (2000). The young child and mathematics. National Association for the Education of Young Children.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95-123). Kluwer. DOI: https://doi.org/10.1007/0-306-47203-1_7

Dubinsky, E., Arnon, I., & Weller, K. (2013). Preservice Teachers’ Understanding of the Relation between a Fraction or Integer and its Decimal Expansion: The Case of 0.9 ̂ and 1. Canadian Journal of science, mathematics and Technology education, 13(3), 232-258. https://doi.org/10.1080/14926156.2013.816389 DOI: https://doi.org/10.1080/14926156.2013.816389

Gronow, M., Mulligan, J., & Cavanagh, M. (2022). Teachers’ understanding and use of mathematical structure. Mathematics Education Research Journal 34, 215-240. https://doi.org/10.1007/s13394-020-00342-x DOI: https://doi.org/10.1007/s13394-020-00342-x

Huntzinger, E. M. (2008). Exploring generalization through pictorial growth patterns. In C. E. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics (pp. 279-293). NCTM.

Jones, D. & Bush, W. S. (1996). Mathematical structures: Answering the “Why” questions. The Mathematics Teacher, 89, 716-722. DOI: https://doi.org/10.5951/MT.89.9.0716

Kaput, J., Carraher, D. W., & Blanton, M. L. (Eds.) (2007). Algebra in the early grades. Lawrence Erlbaum Associates.

Lannin, J. K., Barker, D. D., & Townsend, B. E. (2006). Algebraic generalization strategies: factors influencing student strategy selection. Mathematics Education Research Journal, 18(3), 3-28. DOI: https://doi.org/10.1007/BF03217440

Mason, J. (1996). Expressing generality and roots of algebra. In N. Bdnarz, C. Kieran & L. Lee (Eds), Approaches to algebra: perspective for research and teaching (pp.65-86). Kluwer. DOI: https://doi.org/10.1007/978-94-009-1732-3_5

Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical structures for all. Mathematics Education Research Journal, 21(2), 10-32. https://doi.org/10.1007/BF03217543 DOI: https://doi.org/10.1007/BF03217543

Mulligan, J., Prescott, A., & Mitchelmore, M. (2004). Children’s development of structure in early mathematics. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th conference of the International Group for the Psychology in Mathematics Education. PME.

Mulligan, J. & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33-49. https://doi.org/10.1007/BF03217544 DOI: https://doi.org/10.1007/BF03217544

Markworth, K. A. (2010). Growing and growing: Promoting functional thinking with geometric growing patterns (Dissertation). Chapel Hill, University of North Carolina, USA.

NCTM (2000). Principles and Standards for School Mathematics. The National Council of Teachers of Mathematics.

Oliveira, H., Polo-Blanco, I., & Henriques, A. (2021). Exploring prospective elementary mathematics teachers’ knowledge: A focus on functional thinking. Journal on Mathematics Education, 12(2), 257-278. https://doi.org/10.22342/jme.12.2.13745.257-278 DOI: https://doi.org/10.22342/jme.12.2.13745.257-278

Piaget, J. (1975). Piaget’s theory (Translated by G. Cellerier & J. Langer). In P. B. Neubauer (Ed.), The process of child development (pp. 164-212). Jason Aronson.

Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2009). The growth of mathematical patterning strategies in preschool children. In M. Tzekaki, M. Kaldrimidou, H. Sakonidis (Eds), Proceedings of the 33th Conference of the International Group for the Psychology of Mathematics Education - in search for theories in mathematics education (pp. 329-336). PME.

Papic, M., Mulligan, J., & Mitchelmore, M. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237-268. https://doi.org/10.5951/jresematheduc.42.3.0237 DOI: https://doi.org/10.5951/jresematheduc.42.3.0237

Rivera, F. (2011). Toward a visually-oriented school mathematics curriculum: Research, theory, practice, and issues. Springer. DOI: https://doi.org/10.1007/978-94-007-0014-7

Rivera, F. (2013). Teaching and learning patterns in school mathematics: Psychological and pedagogical considerations. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-007-2712-0

Samson, D. A. (2007). An Analysis of the Influence of Question Design on Pupils’ Approaches to Number Pattern Generalisation Tasks. (Master Thesis). Grahamstown, Rhodes University, South Africa. DOI: https://doi.org/10.4102/pythagoras.v0i66.79

Samson, D. A. (2011). The Heuristic Significance of Enacted Visualisation. (Dissertation). Grahamstown, Rhodes University, South Africa.

Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. In J. J. Kaput, D. W. Carrher, M. L. Blanton (Eds), Algebra in the Early Grades (pp. 133-163). Routledge. DOI: https://doi.org/10.4324/9781315097435-6

Sutarto, Nusantara, T., Subanji, Hastuti, I. D., & Dafik (2018). Global conjecturing process in pattern generalization problem. Journal of Physics: Conference Series 1008, 012060. https://doi.org/10.1088/1742-6596/1008/1/012060 DOI: https://doi.org/10.1088/1742-6596/1008/1/012060

Sutarto, Nusantara, T., Subanji, & Sisworo (2016). Local conjecturing process in the solving of pattern generalization problem. Educational Research and Reviews, 11(8), 732-742. https://doi.org/10.5897/ERR2016.2719

Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics and Technology Education, 9(1), 5-28. https://doi.org/10.1080/14926150902817381 DOI: https://doi.org/10.1080/14926150902817381

Wilkie, K. J., & Clarke, D. M. (2016). Developing students’ functional thinking in algebra through different visualisations of a growing pattern’s structure. Mathematics Education Research Journal, 28(2), 223-243. https://doi.org/10.1007/s13394-015-0146-y DOI: https://doi.org/10.1007/s13394-015-0146-y

Yuniati, S., Nusantara, T., Subanji, & Made Sulandra (2020). Stages in partial functional thinking in the form of liner functions: APOS theory. Humanities & Social Sciences Reviews, 8(3), 536-544. https://doi.org/10.18510/hssr.2020.8358 DOI: https://doi.org/10.18510/hssr.2020.8358

Descargas

Publicado

2023-10-23 — Actualizado el 2023-10-23

Versiones

Número

Sección

Artículos