Prospective elementary school teachers’ proportional reasoning
DOI:
https://doi.org/10.30827/pna.v7i1.6134Keywords:
Direct proportionality, Multiplicative structure problems, Proportional reasoning, Prospective elementary school teachersAbstract
We present the findings of a study on prospective elementary teachers’ proportional reasoning. After describing some of the teachers’ performance in solving multiplicative structure problems that involve ratios and relations of direct proportionality between quantities, we were able to establish classifications of their answers according to various categories of proportional reasoning.
Razonamiento proporcional de futuros maestros de educación primaria
Presentamos los resultados de un estudio sobre el razonamiento proporcional de futuros maestros de educación primaria. Describimos las actuaciones manifestadas por un grupo de estudiantes de magisterio de la Universidad de Granada al resolver problemas de estructura multiplicativa que involucran razones y relaciones de proporcionalidad directa entre cantidades. Encontramos que sus respuestas se clasifican en distintas categorías de razonamiento proporcional.
Handle: http://hdl.handle.net/10481/21533
Nº de citas en WOS (2017): 2 (Citas de 2º orden, 1)
Nº de citas en SCOPUS (2017): 1 (Citas de 2º orden, 0)
Downloads
References
Allain, A. (2000). Development of an instrument to measure proportional reasoning among fast-track middle school students. (Unpublished master's thesis). North Carolina State University, United States.
Ball, D. L. (1990). Prospective elementary and secondary teachers' understanding of division. Journal for Research in Mathematics Education, 21(2), 132-144.
Behr, M. J., Harel, G., Post, T., & Lesh, R. (1992). Rational number, ratio, and proportion. In D. A. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 296-333). New York, NY: Macmillan.
Ben-Chaim, D., Fey, J., Fitzgerald, W., Benedetto, C., & Miller, J. (1998). Proportional reasoning among 7th grade students with different curricular experiences. Educational Studies in Mathematics, 36(3), 247-273.
Ben-Chaim, D., Keret, J., & Ilany, B. (2007). Designing and implementing authentic investigative proportional reasoning tasks: the impact on pre-service mathematics teachers' content and pedagogical knowledge and attitudes. Journal of Mathematics Teacher Education, 10(4-6), 333-340.
Cramer, K., & Post, T. (1993). Connecting research to teaching proportional reasoning. Mathematics Teacher, 86(5), 404-407.
Durmus, S. (2005). Identifying pre-service elementary school teachers' conceptualization levels of rational numbers. Kuram ve Uygulamada E_itim Bilimleri, 5(2), 659-666.
Fernández, A. (2009). Razón y proporción. Un estudio en la escuela primaria. Valencia: Universidad de Valencia.
Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht, The Netherlands: Reidel.
Graeber, A., Tirosh, D., & Glover, R. (1989). Pre-service teachers' misconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 20(1), 95-102.
Harel, G., Behr, M., Lesh, R., & Post, T. (1994). Invariance of ratio: The case of children's anticipatory scheme for constancy of taste. Journal for Research in Mathematics Education, 25(4), 324-345.
Hart, K. (1984). Ratio: Children's strategies and errors. A report of the strategies and errors in secondary mathematics project. London, United Kingdom: NFER-Nelson.
Karplus, R., Pulos, S., & Stage, E. K. (1983). Early adolescents' proportional reasoning on “rate” problems. Educational Studies in Mathematics, 14(3), 219-233.
Lamon, S. (1993). Ratio and proportion: Connecting and children's thinking. Journal for Research in Mathematics Education, 24(1), 41-61.
Lamon, S. (2007). Rational numbers and proportional reasoning. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629-667). Charlotte, NC: Information Age Publishing.
Lobato, J., Orrill, C., Druken, B., & Jacobson, E. (2011, April). Middle school teachers' knowledge of proportional reasoning for teaching. Paper presented at the Annual Meeting of the American Educational Research Association (AERA), New Orleans, LA. Abstract retrieved from http://www.kaputcenter.
umassd.edu/downloads/products/workshops/AERA2011/Lobato_Orrill_Druken_Erikson_AERA_2011.pdf
Ministerio de Educación y Ciencia (2006). Real Decreto 1513/2006 de 7 de diciembre, por el que se establecen las enseñanzas mínimas de la educación primaria (Vol. BOE, nº 293, pp. 43053-43102). Madrid: Author.
Modestou, M., & Gagatsis, A. (2007). Students' improper proportional reasoning: A result of the epistemological obstacle of “linearity”. Educational Psychology, 27(1), 75-92.
National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author.
Noelting, G. (1980a). The development of proportional reasoning and the ratio concept. Part 1. Differentiation of stages. Educational Studies in Mathematics, 11(2), 217-253.
Noelting, G. (1980b). The development of proportional reasoning and the ratio concept. Part 2. Problem-structure at successive stages. Problem-solving strategies and the mechanism of adaptive restructuring. Educational Studies in Mathematics, 11(2), 331-363.
Norton, S. (2005). The construction of proportional reasoning. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 17-24). Melbourne, Australia: PME.
Simon, M. A. (1993). Prospective elementary teachers' knowledge of division. Journal for Research in Mathematics Education, 24(3), 233-254.
Simon, M. A., & Blume, G. W. (1994). Mathematical modeling as a component of understanding ratio-as-measure: A study of prospective elementary teachers. Journal of Mathematical Behavior, 13(2), 183-197.
Tourniaire, F., & Pulos, S. (1985). Proportional reasoning: a review of the literature. Educational Studies in Mathematics, 16(2), 181-204.
Valverde, G. (2008). Razonamiento proporcional: un análisis de las actuaciones de maestros en formación. (Unpublished master's thesis). Universidad de Granada, Spain.
Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is proportional: effects of age and problem type on propensities for overgeneralization. Cognition and Instruction, 23(1), 57-86.
Van Dooren, W., De Bock, D., & Verschaffel, L. (2006). La búsqueda de las raíces de la ilusión de linealidad. Indivisa, Boletín de Estudios e Investigación. Monografía IV, 115-135.
Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (Vol. 2, pp. 141-161). Reston, VA: National Council of Teachers of Mathematics.