Traits of mathematical talent in secondary school students. Generalization in a functional context
DOI:
https://doi.org/10.30827/pna.v19i1.28279Keywords:
Algebraic thinking, Functional thinking, Mathematical talent, Representations of generalization, StrategiesAbstract
This work identifies differentiating traits of mathematical talent in seventh and eighth grade secondary school students who solved an admission test to a program to stimulate mathematical talent. A comparison is carried out between the students admitted to the program and those not admitted, focused on the analysis of the resolution of a generalization problem that involves a functional relationship. The results reveal the application of efficient strategies and the consistency between their responses. Admitted students stood out for mainly following complete regularities and symbolically representing their generalizations, they evidenced more varied, coherent and complex structures than the other students.
Downloads
References
Akkan, Y. (2013). Comparison of 6th-8th graders’s efficiencies, strategies and representations regarding generalization patterns. Bolema, 27(47), 703-732. https://doi.org/10.1590/S0103-636X2013000400002
Amit, M. y Neria, D. (2008). “Rising to the challenge”: using generalization in pattern problems to unearth the algebraic skills of talented pre-algebra students. ZDM, 40, 111-129. https://doi.org/10.1007/s11858-007-0069-5
Arbona, E., Beltrán-Meneu, M. J. y Gutiérrez, A. (2019). Strategies exhibited by good and average solvers of geometric pattern problems as source of traits of mathematical giftedness in grades 4-6. En U. T. Jankvist, M. Van den Heuvel-Panhuizen y M. Veldhuis (Eds.), Proceedings of the 11th Congress of the European Society for Research in Mathematics Education (CERME11) (pp. 534-541). ERME.
Arbona, E., Beltrán-Meneu, M. J. y Gutiérrez, A. (2021a). Estrategias empleadas por estudiantes de primaria en la resolución de problemas de patrones geométricos. En P. Diago, D. Yáñez, M. González-Astudillo y D. Carrillo (Eds.), Investigación en Educación Matemática XXIV (pp. 133-140). SEIEM.
Arbona, E., Gutiérrez, A. y Beltrán-Meneu, M. J. (2021b). Características diferenciadoras de estudiantes con alta capacidad matemática en la resolución de problemas de patrones geométricos. En Á. Gutiérrez, M. J. Beltrán-Meneu, J. M. Ribera, R. Ramírez-Uclés, A. Jaime, E.
Arbona, C. Sua, L. Rotger, C. Jiménez-Gestal, A. A. Magreñán y A. M. Damián (Eds.), Actas de las Jornadas Internacionales de Investigación y Práctica Docente en Alta Capacidad Matemática (pp. 29-36). Universidad de La Rioja.
Barbosa, A., Vale, I. y Palhares, P. (2012). Pattern tasks: Thinking processes used by 6th grade students. Revista Latinoamericana de Investigación en Matemática Educativa, 15(3), 273-293.
Blanton, M. L., Levi, L., Crites, T. y Dougherty, B. J. (Eds.) (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. NCTM.
Butto, C., Andrade, A. y Lanz, M.Y. (2016). Identificación de estudiantes con altas capacidades matemáticas en educación primaria. Horizontes Pedagógicos, 18(2), 66-85.
Castro, E., Benavides, M. y Segovia, I. (2006). Cuestionario para caracterizar a niños con talento en resolución de problemas de estructura multiplicativa. Faisca: Revista de Altas Capacidades, 11(13), 4-22.
Díaz, O., Sánchez, T., Pomar, C. y Fernández, M. (2008). Talentos matemáticos: análisis de una muestra. Faisca: Revista de Altas Capacidades, 13(15). 30-39.
Dündar, S., Temel, H. y Gündüz, N. (2016). Development of a mathematical ability test: a validity and reliability study. International Journal of Mathematical Education in Science and Technology, 47(7), 1061-1075. https://doi.org/10.1080/0020739X.2016.1153734
El Mouhayar, R. y Jurdak, M. (2015). Variation in strategy use across grade level by pattern generalization types. International Journal of Mathematical Education in Science and Technology, 46(4), 553-569. https://doi.org/10.1080/0020739X.2014.985272
Fritzlar, T. y Karpinski-Siebold, N. (2012). Continuing patterns as a component of algebraic thinking – An interview study with primary school students. En ICME 12 Pre-proceedings (pp. 2022-2031). ICME.
Greenes, C. (1981). Identifying the gifted student in mathematics. Arithmetic Teacher, 28(6), 14-17.
Hernández, R., Fernández, C. y Baptista, P. (2014). Metodología de la Investigación (6ta ed.). McGraw-Hill.
Hunter, J. y Miller, J. (2022). The use of cultural contexts for patterning tasks: supporting young diverse students to identify structures and generalise, ZDM, 54, 1349-1362. https://doi.org/10.1007/s11858-022-01386-y
Jaime, A. y Gutiérrez, A. (2014). La resolución de problemas para la enseñanza a alumnos de Educación Primaria con altas capacidades matemáticas. En B. Gómez y L. Puig (Eds.), Resolver problemas. Estudios en memoria de Fernando Cerdán (pp. 147-190). Publicaciones Universidad de Valencia.
Kaput, J. J. (1999). Teaching and learning a new algebra. En E. Fennema y T. A. Romberg (Eds.), Mathematics Classrooms that Promote Understanding (pp. 133–155). Lawrence Erlbaum Associates.
Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? En J. J. Kaput, D.W. Carraher y M. L. Blanton (Eds.), Algebra in the early grades (pp. 5-17). Lawrence Erlbaum Associates.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in school-children. The University of Chicago Press.
Lannin, J., Barker, D. y Townsend, B. (2006). Algebraic generalisation strategies: Factors influencing student strategy selection. Mathematics Education Research Journal, 18(3), 3-28. https://doi.org/10.1007/BF03217440%20
Leikin, R. (2018). Giftedness and high ability in mathematics. En S. Lerman (Eds.) Encyclopedia of Mathematics Education. Springer. https://doi.org/10.1007/978-3-319-77487-9_65-4
Mason, J., Graham, A. y Johnston-Wilder, S. (2005). Developing thinking in algebra. The Open University and Paul Chapman Publishing.
Miller, R. C. (1990). Discovering mathematical talent. Eric.
Morales, R., Cañadas, M. C., Brizuela, B. M. y Gómez, P. (2018). Relaciones funcionales y estrategias de alumnos de primero de Educación primaria en un contexto funcional. Enseñanza de las Ciencias, 36(3), 59-78. https://doi.org/10.5565/rev/ensciencias.2472
Niederer, K., Irwin, R. J., Irwin, K. C. y Reilly, I. L. (2003). Identification of mathematically gifted children in New Zealand. High Ability Studies, 14(1), 71-84. https://doi.org/10.1080/13598130304088
Paz-Baruch, N., Leikin, M. y Leikin, R. (2022). Not any gifted is an expert in mathematics and not any expert in mathematics is gifted. Gifted and Talented International, 37(1), 25-41. https://doi.org/10.1080/15332276.2021.2010244
Pinto, E. y Cañadas, M. C. (2017). Estructuras y generalización de estudiantes de tercero y quinto de primaria: un estudio comparativo. En J. M. Muñoz-Escolamo, A. Arnal-Bailera, P. Beltrán-Pellicer, M. L. Callejo y J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp. 407-416). SEIEM.
Pinto, E. y Cañadas, M. C. (2021). Generalizations of third and fifth graders within a functional approach to early algebra. Mathematics Education Research Journal 33, 113-134. https://doi.org/10.1007/s13394-019-00300-2
Pitta-Pantazi, D., Christou, C., Kontoyianni, K. y Kattou., M. (2011). A model of mathematical giftedness: integrating natural, creative, and mathematical abilities. Canadian Journal of Science, Mathematics and Technology Education, 11(1), 39-54. https://doi.org/10.1080/14926156.2011.548900
Pólya, G. (1989). ¿Cómo plantear y resolver problemas? Trillas.
Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. En C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds (pp. 3–25). Springer. https://doi.org/10.1007/978-3-319-68351-5_1
Ramírez-Uclés, R. y Cañadas, M. C. (2018). Nominación y atención del talento matemático por parte del docente. UNO. Revista de Didáctica de las Matemáticas, 79, 23-30.
Ramírez, R., Cañadas, M. C. y Damián, A. (2022). Structures and representations used by 6th graders when working with quadratic functions. ZDM, 54, 1393-1406. https://doi.org/10.1007/s11858-022-01423-w
Rico, L. (1997). Consideraciones sobre el currículo de matemáticas para educación secundaria. En L. Rico (Coord.), La Educación Matemática en la enseñanza secundaria (pp. 15-38). Horsori.
Singer, F. M., Sheffield, L. J., Brandl, M., Freiman, V. y Kakihana, K. (2016). Activities for, and research on, mathematically gifted students. En G. Kaiser (Ed.), Proceedings of the 13th ICME (pp. 391-395). Springer. https://doi.org/10.1007/978-3-319-62597-3_31
Sriraman, B. (2003). Mathematical giftedness, problem solving, and the ability to formulate generalizations: The problem-solving experiences of four gifted students. Journal of Secondary Gifted Education, 14, 151-165. https://doi.org/10.4219/jsge-2003-425
Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics, 20(2), 147-164. https://doi.org/10.1007/BF00579460
Torrego, J. C. (Coord.) (2011). Alumnos con altas capacidades y aprendizaje cooperativo. Un modelo de respuesta educativa. Fundación SM.
Torres, M. D., Cañadas, M. C. y Moreno, A. (2019). Estructuras y representaciones de alumnos de 2º de primaria en una aproximación funcional del pensamiento algebraico. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano y Á. Alsina (Eds.), Investigación en
Educación Matemática XXIII (pp. 573-582). SEIEM.
Ureña, J., Ramírez-Uclés, R., Molina, M. y Cañadas. M.C. (2023). Generalization: Strategies and Representations used by Sixth to Eighth graders in a Functional Context, Mathematics Education Research Journal, 36, 519-545. https://doi.org/10.1007/s13394-023-00458-w
Wilkie, K. J. (2016). Students’ use of variables and multiple representations in generalizing functional relationships prior to secondary school. Educational Studies in Mathematics, 93, 333-361. https://doi.org/10.1007/s10649-016-9703-x
Yildiz, D. G. y Durmaz, B. (2021). A Gifted High School Student’s Generalization Strategies of Linear and Nonlinear Patterns via Gauss’s Approach. Journal for the Education of the Gifted, 44(1), 56-80. https://doi.org/10.1177/0162353220978295
Downloads
Published
Issue
Section
License
Copyright (c) 2024 PNA. Revista de Investigación en Didáctica de la Matemática
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.