Trabajo con igualdades numéricas para promover pensamiento relacional
DOI:
https://doi.org/10.30827/pna.v1i1.6218Palabras clave:
Comprensión, Igualdad, Pensamiento relacional, Signo igualResumen
En este documento presentamos algunos de los resultados de un estudio que aporta evidencias de la capacidad, de los alumnos de tercero de educación primaria, para desarrollar pensamiento relacional y comprensión del significado del signo igual “equivalencia numérica”, trabajando en un contexto de igualdades numéricas.
Working with Numeric Equalities for Promoting Relational Thinking
Handle: http://hdl.handle.net/10481/3473
Nº de citas en WOS (2017): 4 (citas de 2º orden, 1)
Nº de citas en SCOPUS (2017): 3 (citas de 2º orden, 2)
Descargas
Citas
Behr, M, Erlwanger, S. y Nichols, E. (1980). How children view the equal sign. Mathematics Teaching, 92, 13-15.
Blanton, M. L. y Kaput, J. J. (2003). Developing elementary teachers' "algebra eyes and ears". Teaching Children Mathematics, 10(2), 70-83. DOI: https://doi.org/10.5951/TCM.10.2.0070
Carpenter, T. P., Franke, M. L. y Levi, L. (2003). Thinking mathematically: Integrating arithmetic y algebra in elementary school. Portsmouth: Heinemann.
Castro E., Rico, L. y Castro E. (1987). Números y Operaciones. Fundamentos para la aritmética escolar. Madrid: Editorial Síntesis.
Confrey J. y Lachance A. (2000). Transformative teaching experiments through conjecture-driven research design. En A. E. Kelly y R. A. Lesh, (Eds.), Research design in mathematics and science education (pp. 231-265). NJ: Lawrence Erlbaum associates.
Falkner, K. P., Levi, L. y Carpenter, T. P. (1999). Children's understanding of equality: A foundation for algebra. Teaching Children Mathematics, 6, 232-236. DOI: https://doi.org/10.5951/TCM.6.4.0232
Freiman, V. y Lee, L. (2004). Tracking primary students' understanding of the equal sign. En M. Johnsen y A. Berit (Eds.), Proceedings of the 28th International Group for the Psychology of Mathematics Education: Vol. 2 (pp. 415-422). Bergen, Noruega: Bergen University College.
Hiebert, J. y Carpenter, T. P. (1992). Learning and teaching with understanding. En D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-97). NY: Macmillan.
Kaput, J. (1999). Teaching and Learning a New Algebra. In E. Fennema y T. A. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133-155). Mahwah, NJ: Lawrence Erlbaum Associates.
Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317-326. DOI: https://doi.org/10.1007/BF00311062
Koehler, J. L. (2004). Learning to think relationally: thinking relationally to learn. Dissertation Research Proposal. University of Wisconsin-Madison.
Liebenberg, R., Sasman, M. y Olivier, A. (1999). From numerical equivalence to algebraic equivalence. Mathematics learning and teaching initiative (MALATI). Paper presented in the 5th Annual Conference of the Mathematics Education Associations of South Africa (AMESA), Puerto Elizabeth.
Lindvall, C. M. y Ibarra C. G. (1980). Incorrect procedures used by primary grade pupils in solving open addition and subtraction sentences. Journal for Research in Mathematics Education, 11(1), 50-62. DOI: https://doi.org/10.5951/jresematheduc.11.1.0050
Molina, M. y Ambrose, R. (2006). What is that equal sign doing in the middle?: Fostering relational thinking while negotiating the meaning of the equal sign. Teaching Children Mathematics, 13(2), 111-117. DOI: https://doi.org/10.5951/TCM.13.2.0111
Rathmell, E. C. (1978) Using thinking strategies to teach the basic facts. En M. Suydam y R. E. Reys (Eds.), Developing computational skills, 1978 yearbook of the National Council of Teachers of Mathematics (pp. 13-38). Reston, VA: NCTM.
Rojano, T. (2002). Mathematics learning in the junior secondary school: Students' access to significant mathematical ideas. En L. English (Ed.), Handbook of International Research in Mathematics Education (pp. 143-163). Holanda: Lawrence Erlbaum Associates.
Thornton, C. A. (1978). Emphasizing thinking strategies in basic fact instruction. Journal for Research in Mathematics Education, 9(3), 214-227. DOI: https://doi.org/10.5951/jresematheduc.9.3.0214
Warren, E. (2004). Generalizing arithmetic: supporting the process in the early years. En M. Johnsen y A. Berit (Eds.), Proceedings of the 28th International Group for the Psychology of Mathematics Education: Vol. 4 (pp. 417- 424). Bergen: Bergen University College.