Trabajo con igualdades numéricas para promover pensamiento relacional

Autores/as

  • Marta Molina Universidad de Granada, España
  • Encarnación Castro Universidad de Granada, España
  • Rebecca Ambrose University of California-Davis, Estados Unidos

DOI:

https://doi.org/10.30827/pna.v1i1.6218

Palabras clave:

Comprensión, Igualdad, Pensamiento relacional, Signo igual

Resumen

En este documento presentamos algunos de los resultados de un estudio que aporta evidencias de la capacidad, de los alumnos de tercero de educación primaria, para desarrollar pensamiento relacional y comprensión del significado del signo igual “equivalencia numérica”, trabajando en un contexto de igualdades numéricas.

Working with Numeric Equalities for Promoting Relational Thinking

In this document we present some of the results of a study which provides evidence of third grade students´ capacity to develop relational thinking and understanding of the meaning of the equal sign “numerical equivalence”, both in a context of number sentences.

Handle: http://hdl.handle.net/10481/3473

Nº de citas en WOS (2017): 4 (citas de 2º orden, 1)

Nº de citas en SCOPUS (2017): 3 (citas de 2º orden, 2)

Descargas

Biografía del autor/a

Marta Molina, Universidad de Granada, España

Código ORCID ResearcherID

Encarnación Castro, Universidad de Granada, España

Código ORCID

 

Citas

Behr, M, Erlwanger, S. y Nichols, E. (1980). How children view the equal sign. Mathematics Teaching, 92, 13-15.

Blanton, M. L. y Kaput, J. J. (2003). Developing elementary teachers' "algebra eyes and ears". Teaching Children Mathematics, 10(2), 70-83. DOI: https://doi.org/10.5951/TCM.10.2.0070

Carpenter, T. P., Franke, M. L. y Levi, L. (2003). Thinking mathematically: Integrating arithmetic y algebra in elementary school. Portsmouth: Heinemann.

Castro E., Rico, L. y Castro E. (1987). Números y Operaciones. Fundamentos para la aritmética escolar. Madrid: Editorial Síntesis.

Confrey J. y Lachance A. (2000). Transformative teaching experiments through conjecture-driven research design. En A. E. Kelly y R. A. Lesh, (Eds.), Research design in mathematics and science education (pp. 231-265). NJ: Lawrence Erlbaum associates.

Falkner, K. P., Levi, L. y Carpenter, T. P. (1999). Children's understanding of equality: A foundation for algebra. Teaching Children Mathematics, 6, 232-236. DOI: https://doi.org/10.5951/TCM.6.4.0232

Freiman, V. y Lee, L. (2004). Tracking primary students' understanding of the equal sign. En M. Johnsen y A. Berit (Eds.), Proceedings of the 28th International Group for the Psychology of Mathematics Education: Vol. 2 (pp. 415-422). Bergen, Noruega: Bergen University College.

Hiebert, J. y Carpenter, T. P. (1992). Learning and teaching with understanding. En D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-97). NY: Macmillan.

Kaput, J. (1999). Teaching and Learning a New Algebra. In E. Fennema y T. A. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133-155). Mahwah, NJ: Lawrence Erlbaum Associates.

Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317-326. DOI: https://doi.org/10.1007/BF00311062

Koehler, J. L. (2004). Learning to think relationally: thinking relationally to learn. Dissertation Research Proposal. University of Wisconsin-Madison.

Liebenberg, R., Sasman, M. y Olivier, A. (1999). From numerical equivalence to algebraic equivalence. Mathematics learning and teaching initiative (MALATI). Paper presented in the 5th Annual Conference of the Mathematics Education Associations of South Africa (AMESA), Puerto Elizabeth.

Lindvall, C. M. y Ibarra C. G. (1980). Incorrect procedures used by primary grade pupils in solving open addition and subtraction sentences. Journal for Research in Mathematics Education, 11(1), 50-62. DOI: https://doi.org/10.5951/jresematheduc.11.1.0050

Molina, M. y Ambrose, R. (2006). What is that equal sign doing in the middle?: Fostering relational thinking while negotiating the meaning of the equal sign. Teaching Children Mathematics, 13(2), 111-117. DOI: https://doi.org/10.5951/TCM.13.2.0111

Rathmell, E. C. (1978) Using thinking strategies to teach the basic facts. En M. Suydam y R. E. Reys (Eds.), Developing computational skills, 1978 yearbook of the National Council of Teachers of Mathematics (pp. 13-38). Reston, VA: NCTM.

Rojano, T. (2002). Mathematics learning in the junior secondary school: Students' access to significant mathematical ideas. En L. English (Ed.), Handbook of International Research in Mathematics Education (pp. 143-163). Holanda: Lawrence Erlbaum Associates.

Thornton, C. A. (1978). Emphasizing thinking strategies in basic fact instruction. Journal for Research in Mathematics Education, 9(3), 214-227. DOI: https://doi.org/10.5951/jresematheduc.9.3.0214

Warren, E. (2004). Generalizing arithmetic: supporting the process in the early years. En M. Johnsen y A. Berit (Eds.), Proceedings of the 28th International Group for the Psychology of Mathematics Education: Vol. 4 (pp. 417- 424). Bergen: Bergen University College.

Descargas

Publicado

2007-01-01

Número

Sección

Artículos
Crossref
0
Scopus
0