Elementary school students´approaches to solving true/false number sentences
DOI:
https://doi.org/10.30827/pna.v2i2.6200Palabras clave:
Early-algebra, Meta-estrategias conceptuales, Sentencias numéricas, Pensamiento relacionalResumen
This paper focuses on eight-year old students’ ways of approaching true/false number sentences. The data presented here belongs to a teaching experiment in which the use of relational thinking when solving number sentences was explicitly promoted. The study of the way of using this type of thinking and of students’ structure of attention, allow us to make distinctions and to provide a description of students’ different behaviours.
Métodos de alumnos de educación primaria para la resolución de sentencias numéricas verdaderas y falsas
Handle: http://hdl.handle.net/10481/3474
Nº de citas en WOS (2017): 3 (Citas de 2º orden, 17)
Nº de citas en SCOPUS (2017): 6 (Citas de 2º orden, 25)
Descargas
Citas
Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in elementary school. Portsmouth: Heinemann.
Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiment in educational research. Educational Researcher, 32(1), 9-13. DOI: https://doi.org/10.3102/0013189X032001009
Confrey, J., & Lachance, A. (2000). Transformative teaching experiments through conjecture-driven research design. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 231-265). Mahwah: Lawrence Erlbaum Associates.
Hejny, M., Jirotkova, D., & Kratochvilova J. (2006). Early conceptual thinking. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 289-296). Prague: Program Committee.
Hewitt, D. (1998). Approaching arithmetic algebraically. Mathematics Teaching, 163, 19-29.
Hoch, M., & Dreyfus, T. (2004). Structure sense in high school algebra: the effect of brackets. In M. Johnsen & A. Berit (Eds.), Proceedings of the 28th International Group for the Psychology of Mathematics Education, (Vol. 3, pp. 49-56). Bergen: Program Committee.
Kieran, C. (1992). The learning and teaching of school algebra. In A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390-419). New York: Macmillan.
Koehler, J. L. (2004). Learning to think relationally: Thinking relationally to learn. Dissertation research proposal, University of Wisconsin-Madison.
Mason, J. (1985). Thinking mathematically. Wokingham: Addison-Wesley Publishing Company.
Mason, J., & Johnston-Wilder, S. (2004). Fundamental constructs in mathematics education. London: RoutledgeFalmer and The Open University. DOI: https://doi.org/10.4324/9780203465387
Molina, M. (2006). Desarrollo de pensamiento relacional y comprensión del signo igual por alumnos de tercero de Primaria. PhD Dissertation, Universidad de Granada. Available at http://cumbia.ath.cx:591/pna/Archivos/MolinaM07-2822.PDF
Molina M., & Ambrose, R. (2006). What is that equal sign doing in the middle?: Fostering relational thinking while negotiating the meaning of the equal sign. Teaching Children Mathematics, 13(2), 111-117. DOI: https://doi.org/10.5951/TCM.13.2.0111
Molina, M., & Ambrose, R. (in press). From an operational to a relational conception of the equal sign. Third graders' developing algebraic thinking. Focus on Learning Problems in Mathematics.
Molina, M., Castro, E., & Ambrose, R. (2006). Trabajo con igualdades numéricas para promover pensamiento relacional. PNA, 1(1), 31-46.
Molina, M., Castro, E., & Castro, E. (forthcoming). Students´ ways of solving number sentences: Analysis of their use of relational thinking.
Puig, L. (1996). Elementos de resolución de problemas. Granada: Colección Mathema.
Radford, L. (2000). Signs and meanings in students´ emergent algebraic thinking: A semiotic analysis. Educational Studies in Mathematics, 42(3), 237- 268. DOI: https://doi.org/10.1023/A:1017530828058
Resnick, L. B. (1992). From protoquantities to operators: Building mathematical competence on a foundation of everyday knowledge. In G. Leinhardt, R. Putnam, & R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 373-429). Hillsdale: Lawrence Erlbaum Associates. DOI: https://doi.org/10.4324/9781315044606-7
Slavit, D. (1999). The role of operation sense in transitions from arithmetic to algebraic thought. Educational Studies in Mathematics, 37(3), 251-274. DOI: https://doi.org/10.1023/A:1003602322232