Revisiting university students’ knowledge that involves basic differential equation questions
DOI:
https://doi.org/10.30827/pna.v3i3.6184Palabras clave:
Ecuaciones diferenciales, Métodos de resolución, Representaciones, SignificadoResumen
This study documents the extent to which university students utilize diverse representations and mathematical processes to interpret and respond to a set of questions that involves fundamental concepts in the study of differential equations. Results indicate that students’ idea to solve a differential equation is reduced to the application of proper solution methods to a certain type of equation differential expressions. Thus, instructional activities should promote the students’ use of several representation systems in which they can reflect on the various aspects associated with the concept itself, the solution methods, procedures, and the corresponding meaning and connections among those representations.
Conocimiento de los Estudiantes Universitarios con Respecto a Preguntas que Implican Ecuaciones Diferenciales: una Revisión
Handle: http://hdl.handle.net/10481/3512
Nº de citas en WOS (2017): 1 (Citas de 2º orden, 0)
Nº de citas en SCOPUS (2017): 1 (Citas de 2º orden, 0)
Descargas
Citas
Camacho, M., Depool, R., & Santos-Trigo, M. (in press). Students' use of DERIVE software in comprehending and making sense of definite integral and area concepts. Research in Collegiate Mathematics Education, 7.
Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, 5, 37-65.
González-Martín, A. S., & Camacho, M. (2004). Legitimization of the graphic register in problem solving at the undergraduate level. The case of the improper integral. In M. J. Høines & A. B. Fuglestad (Eds), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 479-486). Bergen, Norway: Bergen University College.
Santos-Trigo, M. (2007). La resolución de problemas matemáticos. Fundamentos cognitivos. México DF, México: Trillas.
Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161-177. DOI: https://doi.org/10.1090/S0273-0979-1994-00502-6