Reasoning by contradiction in dynamic geometry
DOI:
https://doi.org/10.30827/pna.v7i2.6129Palabras clave:
Argumento indirecto, Geometría dinámica, Prueba, Prueba por contradicción, Pseudo-objetoResumen
This paper addresses contributions that dynamic geometry systems (DGSs) may give in reasoning by contradiction in geometry. We present analyses of three excerpts of students’ work and use the notion of pseudo object, elaborated from previous research, to show some specificities of DGS in constructing proof by contradiction. In particular, we support the claim that a DGS can offer guidance in the solver’s development of an indirect argument thanks to the potential it offers of both constructing certain properties robustly, and of helping the solver perceive pseudo objects.
Razonamiento por contradicción en geometría dinámica
Este artículo aborda las contribuciones que los sistemas de geometría dinámica (DGSs) pueden dar al razonamiento por contradicción en geometría. Presentamos un análisis de tres extractos del trabajo de estudiantes y el uso de la noción de pseudo-objeto, elaborado a partir de investigaciones anteriores, para mostrar algunas especificidades del DGS en la construcción de pruebas por contradicción. En particular, afirmamos que un DGS puede orientar en el desarrollo de un argumento indirecto gracias a las posibilidades que ofrece tanto para construir sólidamente algunas propiedades como para ayudar a percibir los pseudoobjetos.
Handle: http://hdl.handle.net/10481/22368
Nº de citas en WOS (2017): 2 (Citas de 2º orden, 4)
Nº de citas en SCOPUS (2017): 1 (Citas de 2º orden, 5)
Descargas
Citas
Antonini, S., & Mariotti, M. A. (2007). Indirect proof: an interpreting model. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 541-550). Larnaca, Cyprus: University of Cyprus.
Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving? Zentralblatt fu_r Didaktik der Mathematik, 40(3), 401-412.
Baccaglini-Frank, A. (2010). The maintaining dragging scheme and the notion of instrumented abduction. In P. Brosnan, D. Erchick, & L. Flevares (Eds.), Proceedings of the 10th Conference of the PME-NA (Vol. 6, pp. 607-615). Columbus, OH: The Ohio State University.
Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures through dragging in dynamic geometry: the Maintaining Dragging Model. International Journal of Computers for Mathematical Learning, 15(3), 225-253.
Healy, L. (2000). Identifying and explaining geometric relationship: interactions with robust and soft Cabri constructions. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th conference of the IGPME (Vol. 1, pp. 103-117). Hiroshima, Japan: University of Melbourne.
Leron, U. (1985). A direct approach to indirect proofs. Educational Studies in Mathematics, 16(3), 321-325.
Leung, A., & Lopez-Real, F. (2002). Theorem justification and acquisition in dynamic geometry: a case of proof by contradiction. International Journal of Computers for Mathematical Learning, 7(2), 145-165.
Mariotti, M. A., & Antonini, S. (2006). Reasoning in an absurd world: difficulties with proof by contradiction. In J. Novotna, H. Moraova, M. Kratka, & N. Sthlikova (Eds.), Proceedings of the 30th PME Conference (Vol. 2, pp. 65-72). Prague, Czech Republic: Faculty of Education, Charles University in Prague.
Mariotti, M. A., & Antonini, S. (2009). Breakdown and reconstruction of figural concepts in proofs by contradiction in geometry. In F. L. Lin, F. J. Hsieh, G. Hanna, & M. de Villers (Eds.), Proof and proving in mathematics education, ICMI Study 19 Conference Proceedings (Vol. 2, pp. 82-87). Taipei, Taiwan: National Taiwan Normal University.
Wu Yu, J., Lin, F., & Lee, Y. (2003). Students' understanding of proof by contradiction. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceedings of the 2003 Joint Meeting of PME and PMENA (Vol. 4, pp. 443-449). Honolulu, HI: College of Education, University of Hawaii.