Contenido principal del artículo

P. Holt Wilson
The University of North Carolina at Greensboro, Estados Unidos
Biografía
Paola Sztajn
North Carolina State University, Estados Unidos
Cyndi Edgington
North Carolina State University, Estados Unidos
Vol. 7 Núm. 4: (Junio, 2013), Artículos, Páginas 135-143
DOI: https://doi.org/10.30827/pna.v7i4.6125
Recibido: Jun 25, 2017 Aceptado: Jun 25, 2017 Publicado: Jun 1, 2013

Resumen

In this paper, we present an emerging set of learning conjectures and design principles to be used in the development of professional learning tasks that support elementary teachers’ learning of mathematics learning trajectories. We outline our theoretical perspective on teacher knowledge of learning trajectories, review the literature concerning mathematics professional learning tasks, offer a set of initial conjectures about teacher learning of learning trajectories, and articulate a set of principles to guide the design of tasks. We conclude with an example of one learning trajectory professional learning task taken from our current research project.

Diseño de tareas de aprendizaje profesional para trayectorias de aprendizaje de matemáticas

En este artículo, presentamos un conjunto emergente de conjeturas de aprendizaje y de principios de diseño para ser empleados en el desarrollo de tareas de aprendizaje profesional que apoyan el aprendizaje de trayectorias de aprendizaje de matemáticas de maestros de primaria. Describimos brevemente nuestra perspectiva teórica sobre el conocimiento del profesor acerca de trayectorias de aprendizaje; revisamos la literatura sobre tareas de aprendizaje profesional, presentamos un conjunto de conjeturas iniciales acerca del aprendizaje del profesor sobre trayectorias de aprendizaje; y articulamos un conjunto de principios para guiar el diseño de tareas. Concluimos con un ejemplo de una tarea de aprendizaje profesional que ha sido tomada de nuestro proyecto de investigación actual.

Handle: http://hdl.handle.net/10481/24791

Nº de citas en WOS (2017): 3 (Citas de 2º orden, 2)

Nº de citas en SCOPUS (2017): 3 (Citas de 2º orden, 1)

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Citas

Ball, D., Thames, M., & Phelps. G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407.

Clements, D., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81-89.

Clements, D., Sarama, J., Spitler, M. E., Lange, A. A., & Wolfe, C. B. (2011). Mathematics learned by young children in an intervention based on learning trajectories. Journal for Research in Mathematics Education, 42(2), 127-166.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13.

Confrey, J. (2006). The evolution of design studies as methodology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 135-152). Cambridge, United Kingdom: Cambridge Press.

Confrey, J. (2012). Better measurement of higher-cognitive processes through learning trajectories and diagnostic assessments in mathematics: the challenge in adolescence. In V. Reyna, M. Dougherty, S. B. Chapman, & J. Confrey (Eds.), The adolescent brain: learning reasoning, and decision making. Washington, DC: American Psychology Association.

Confrey, J., Maloney, A. P., Nguyen, K. H., Mojica, G., & Myers, M. (2009). Equipartitioning/splitting as a foundation of rational number reasoning using learning trajectories. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the Psychology of Mathematics Education (Vol. 2, pp. 345-352). Thessaloniki, Greece: PME.

Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence based approach to reform. Retrieved from http://www.cpre.org/ima ges/stories/cpre_pdfs/lp_science_rr63.pdf

Daro, P., Mosher, F., & Corcoran, T. (2011). Learning trajectories in mathematics: a foundation for standards, curriculum, assessment, and instruction. Retrieved from http://www.cpre.org/images/stories/cpre_pdfs/learning%20trajectories%20in%20math_ccii%20report.pdf

Mojica, G. (2010). Preparing pre-service elementary teachers to teach mathematics with learning trajectories. Unpublished doctoral dissertation, North Carolina State University, USA.

Philipp, R. (2008). Motivating prospective elementary school teachers to learn mathematics by focusing upon children's mathematical thinking. Issues in Teacher Education, 17(2), 7-26.

Phillip, R., Thanheiser, E., & Clement, L. (2002). The role of a children's mathematical thinking experience in the preparation of prospective elementary school teachers. International Journal of Educational Reform, 27(2), 195-213.

Shulman, L. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

Silver, E., Clark, L., Ghousseini, H., Charalambous, C., & Sealy, J. (2007). Where is the mathematics? Examining teachers' mathematical learning opportunities in practice-based professional learning tasks. Journal of Mathematics Teacher Education, 11(4-6), 261-277.

Silverman, J., & Thompson, P. (2008). Toward a framework for the development of mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 499-511.

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.

Simon, M. A. (2006). Key developmental understandings in mathematics: a direction for investigating learning goals. Mathematical Thinking & Learning, 8(4), 359-371.

Smith, M. S. (2001). Practice-based professional development for teachers of mathematics. Reston, VA: National Council of Teachers of Mathematics.

Smith, M. S., & Boston, M. (2009). Transforming secondary mathematics teaching: Increasing the cognitive demands of instructional tasks used in teachers' classrooms. Journal for Research in Mathematics Education, 40(2), 119-156.

Swan, M. (2007). The impact of task-based professional development on teachers' practices and beliefs. Journal of Mathematics Teacher Education, 11(4-6), 217-237.

Wilson, P. H. (2009). Teachers' uses of a learning trajectory for equipartitioning. Unpublished doctoral dissertation. North Carolina State University, USA.

Zaslavsky, O. (2007). Mathematics-related tasks, teacher education, and teacher educators. Journal of Mathematics Teacher Education, 11(4-6), 433-440.

This document was originally published as Wilson, P. H., Sztajn, P., & Edgington, C. (2012). Designing professional learning tasks for mathematics learning trajectories. In T.-Y. Tso (Ed.), Proceedings of the 36th annual meeting of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 227-233). Taipei, Taiwan: PME.