(Dis)orientation and spatial sense: Topological thinking in the middle grades

Autores/as

  • Elizabeth de Freitas Adelphi University, Estados Unidos
  • MaryJean McCarthy Adelphi University, Estados Unidos

DOI:

https://doi.org/10.30827/pna.v9i1.6108

Palabras clave:

Cuerpo, Fenomenología, Geometría, Nudos, Orientación, Topología

Resumen

In this paper, we focus on topological approaches to space and we argue that experiences with topology allow middle school students to develop a more robust understanding of orientation and dimension. We frame our argument in terms of the phenomenological literature on perception and corporeal space. We discuss findings from a quasi-experimental study engaging 9 grades 5-8 students (10-13 years old) in a 6-week series of school-based workshops focused on knot theory. We discuss video data that shows how students engage with the intrinsic disorientation of mathematical knots through the use of gesture and movement.

(Des)orientación y sentido espacial: pensamiento topológico en los grados intermedios

En este trabajo, nos centramos en enfoques topológicos del espacio y sostenemos que las experiencias con topología permiten a los estudiantes de secundaria desarrollar una comprensión más sólida de la orientación y de la dimensión. Enmarcamos nuestro argumento en términos de la literatura fenomenológica de la percepción y el espacio corpóreo. Discutimos los hallazgos de un estudio cuasi-experimental con 9 estudiantes de quinto a octavo curso (10 a 13 años) que participaron en talleres sobre la teoría de nudos durante 6 semanas. Discutimos los datos de vídeo que muestran cómo los estudiantes se involucran con la desorientación intrínseca de los nudos matemáticos mediante el uso del gesto y movimiento.

Handle: http://hdl.handle.net/10481/33232

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adams, C. (2004). Why knot? An introduction to the mathematical theory of knots. Englewood, CO: Key College Publishing.

Ahmed, S. (2010). Orientations matter. In D. Coole & S. Frost (Eds.), New materialisms: Ontology, agency, and politics (pp. 234-257). London, United Kingdom: Duke University Press.

Berthoz, A. (2000). The brain's sense of movement. Cambridge, MA: Harvard University Press.

Châtelet, G. (2006). Interlacing the singularity, the diagram and the metaphor. In S. Duffy (Ed.), Virtual mathematics: The logic of difference (pp. 31-45). Manchester, United Kingdom: Clinamen Press.

Debnath, L. (2010). A brief historical introduction to Euler's formula for polyhedra, topology, graph theory and networks. International Journal of Mathematical Education in Science and Technology, 41(6), 769-785.

Fielker, D. (2011). Some thoughts about geometries. Mathematics in School, 40(2), 23-26.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.

Gray, J. (1979). Ideas of space: Euclidean, non-Euclidean and relativistic. Oxford, United Kingdom: Clarendon Press.

Handa, Y. & Mattman, T. (2008). Knot theory with young children. Mathematics Teaching, 211, 32-35.

Hilbert, D. & Cohn-Vossen, S. (1952/1983/1990). Geometry and the imagination (P. Nemenyi, Trans., 2nd Edition). New York, NY: Chelsea Publishing Company.

Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin & Review, 15(3), 495-514.

Kuechler, S. (2001). Why knot? Towards a theory of art and mathematics. In C. Pinney & N. Thomas (Eds.), Beyond aesthetics: Art and the technologies of enchantment (pp. 57-77). Oxford, United Kingdom: Berg.

Nemirovsky, R. & Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educational Studies of Mathematics, 70(2), 159-174.

Netz, R. & Noel, W. (2007). The Archimedes codex: Revealing the secrets of the worlds greatest palimpsest. Philadelphia, PA: Da Capo Press.

Núñez, R., Edwards, L., & Matos, J. F. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39(1), 45-65.

O'Shea, D. (2007). The Poincaré conjecture: In search of the shape of the universe. New York, NY: Walter and Company.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.

Richeson, D. S. (2008). Euler's gem: The polyhedron formula and the birth of topology. Princeton, NJ: Princeton University Press.

Rush, F. (2009). On Architecture. New York, NY: Routledge.

Smith, D.W. (2006). Axiomatics and problematics as two modes of formalisation: Deleuze's epistemology of mathematics. In S. Duffy (Ed.), Virtual mathematics: The logic of difference (pp. 145-168). Manchester, United Kingdom: Clinamen Press.

Stahl, S. (2005). Introduction to topology and geometry. Hoboken, NJ: Wiley-Interscience.

Strohecker, C. (1991). Elucidating styles of thinking about topology through thinking about knots. In I. Harel & S. Papert (Eds.), Constructionism (pp. 215-234). Norwood, NJ: Ablex.

Teissier, B. (2011). Mathematics and narrative: Why are stories and proofs interesting? In A. Doxiadis & B. Mazur (Eds.), Circles disturbed: The interplay of mathematics and narrative (pp. 232-243). Princeton, NJ: Princeton University Press.

Descargas

Publicado

2014-09-01

Número

Sección

Artículos