Mathematics teachers’ ideas about mathematical models: A diverse landscape

Autores/as

  • Alfredo Bautista Tufts University, Estados Unidos; Nanyang Technological University, Singapur
  • Michelle H. Wilkerson-Jerde Tufts University, Estados Unidos
  • Roger G. Tobin Tufts University, Estados Unidos
  • Bárbara M. Brizuela Tufts University, Estados Unidos

DOI:

https://doi.org/10.30827/pna.v9i1.6107

Palabras clave:

Formación académica, Modelización, Modelos matemáticos, Profesores de matemáticas

Resumen

This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers’ ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers’ written responses to three open-ended questions through content analysis. A varied landscape of ideas was identified. Teachers referred to different entities as constituting models, expressed different ideas about whether data points can be part of models, and whether models convey more information than data. Interesting differences according to educational background were identified, especially between teachers with and without mathematics backgrounds.

Ideas de profesores de matemáticas sobre modelos matemáticos: un panorama diverso

Este artículo describe las ideas que tienen profesores de matemáticas (grados 5-9) acerca de los modelos matemáticos de fenómenos del mundo real y explora cómo esas ideas difieren dependiendo de la formación académica de los profesores. Analizamos las respuestas de 56 profesores en ejercicio estadounidenses a tres preguntas abiertas, mediante un análisis de contenido. Identificamos un panorama variado de ideas sobre las entidades que constituyen el modelo matemático, sobre si los datos pertenecen o no al modelo, y sobre si el modelo es más o menos informativo que los datos. Encontramos diferencias interesantes entre profesores con y sin formación matemática.

Handle:  http://hdl.handle.net/10481/33231

Descargas

Biografía del autor/a

Alfredo Bautista, Tufts University, Estados Unidos; Nanyang Technological University, Singapur

Código ORCID ResearcherID

Roger G. Tobin, Tufts University, Estados Unidos

Código ORCID

Bárbara M. Brizuela, Tufts University, Estados Unidos

Código ORCID ResearcherID

Citas

Ainley, J. (2012). Developing purposeful mathematical thinking: A curious tale of apple trees. PNA, 6(3), 85-103.

Blum, W. (2002). ICMI Study 14: Applications and modelling in math education - Discussion document. Educational Studies in Mathematics, 51, 149-171.

Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.

Blum, W., & Niss, N. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects - State trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68.

Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics. Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.

Doerr, H. M. (2007). What knowledge do teachers need for teaching mathematics through applications and modeling? In W. Blum, P. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in math education (Vol. 10, pp. 69-78). New York, NY: Springer.

English, L., & Sriraman, B. (2010). Problem solving for the 21st century. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 263-285). New York, NY: Springer.

Erdogan, A. (2010). Primary teacher education students' ability to use functions as modeling tools. Procedia Social and Behavioral Sciences, 2(2), 4518-4522.

George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference. Boston, MA: Allyn & Bacon.

Gilat, T., & Amit, M. (2013). Exploring young students creativity: The effect of model eliciting activities. PNA, 8(2), 51-59.

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155-177.

Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic math education: A calculus course as an example. Educational Studies in Mathematics, 39(1-3), 111-129.

Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7(4), 293-307.

Henn, H. W. (2010). Modelling pedagogy: An overview. In R. Lesh, P. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students' mathematical modelling competencies (pp. 321-324). New York, NY: Springer.

Janvier, C. (1987). Problems of representation in the teaching and learning of mathematics. Hillsdale, NJ: LEA.

Justi, R., & Gilbert, J. (2003). Teachers' views on the nature of models. International Journal of Science Education, 25(11), 1369-1386.

Kaiser, G., Blum, W., Borromeo Ferri, R., & Stillman, G. (Eds.). (2011). Trends in teaching and learning of mathematical modelling. International perspectives on the teaching and learning of mathematical modelling. Dordrecht, The Netherlands: Springer.

Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary mathematics classroom - Problems and opportunities. In W. Blum, P. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in Math Education (Vol. 10, pp. 275-284). New York, NY: Springer.

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modeling in math education. ZDM, 38(3), 302-310.

Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635-679.

Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism, models & modeling perspective on mathematics problem solving, learning & teaching (pp. 3-33). Mahwah, NJ: LEA.

Lesh, R., & Lehrer, R. (2003). Models and modelling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5(2-3), 109-129.

National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: Author.

Niss, M. (1989). Aims and scope of applications and modelling in mathematics curricula. In W. Blum (Ed.), Application and modelling in learning and teaching mathematics (pp. 22-31). Chichester, United Kingdom: Ellis Horwood.

Pozzi, S., Noss, R., & Hoyles, C. (1998). Tools in practice, mathematics in use. Educational Studies in Mathematics, 36(2), 105-122.

Rico, L. (2009). Sobre las nociones de representación y comprensión en la investigación en educación matemática [On the notions of representation and understanding in mathematics education research]. PNA, 4(1), 1-14.

Sánchez, V., & Liinares, S. (2003). Four student teachers' pedagogical reasoning on functions. Journal of Mathematics Teacher Education, 6(1), 5-25.

Spandaw, J. (2011). Practical knowledge of research mathematicians, scientists, and engineers about the teaching of modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (Vol. 1, pp. 679-688). Dordrecht, The Netherlands: Springer.

Szydlik, J. E., Szydlik, S. D., & Benson, S. R. (2003). Exploring changes in pre-service elementary teachers' mathematical beliefs. Journal of Mathematics Teacher Education, 6(3), 253-279.

Teixidor-i-Bigas, M., Schliemann, A. D., & Carraher, D. (2013). Integrating disciplinary perspectives: The Poincaré Institute for Mathematics Education. The Mathematics Enthusiast, 10(3), 519-561.

Trelinski, G. (1983). Spontaneous mathematization of situations outside mathematics. Educational Studies in Mathematics, 14(3), 275-284.

Vahey, P., Rafanan, K., Patton, C., Swan, K., Hooft, M., Kratcoski, A., & Stanford, T. (2012). A cross-disciplinary approach to teaching data literacy and proportionality. Educational Studies in Mathematics, 81(2), 179-205.

Verschaffel, L., De Corte, E., & Borghart, I. (1997). Pre-service teachers' conceptions and beliefs about the role of real-world knowledge in mathematical modelling of school word problems. Learning and Instruction, 7(4), 339-359.

Descargas

Publicado

2014-09-01

Número

Sección

Artículos
Crossref
0
Scopus
0