Mathematical meaning-making and its relation to design of teaching

Autores/as

  • Barbara Jaworski Loughborough University, Reino Unido

DOI:

https://doi.org/10.30827/pna.v9i4.6098

Palabras clave:

Enseñanza, Funciones, Significado matemático

Resumen

This paper addresses the design of teaching to promote engineering students’ conceptual understanding of mathematics, and its outcomes for mathematical meaning-making. Within a developmental research approach, inquiry-based tasks have been designed and evaluated, through the use of competencies proposed for their potential to promote conceptual learning. A sociocultural frame draws attention to interactions between different cultural elements to address challenges to teaching related to student perspectives and the math-ematical meanings they develop. The paper recognizes tensions between design of inquiry-based practice and the outcomes of that practice, and demonstrates the need for new research to address mathematical meanings of a student community within a sociocultural frame.

Creación de significado matemático y su relación con el diseño en la enseñanza


En este trabajo se aborda el diseño de la enseñanza para promover la comprensión conceptual de las matemáticas por parte de estudiantes de ingeniería, y sus resultados para crear significado matemático. Dentro de un enfoque de investigación del desarrollo, las tareas se han diseñado y evaluado a través del uso de competencias propuestas por su potencial para promover aprendizaje conceptual. Un marco sociocultural llama la atención sobre las interacciones entre los diferentes elementos culturales para hacer frente a los retos de la enseñanza en relación a las perspectivas de los estudiantes y los significados matemáticos que desarrollan. El artículo reconoce las ten-siones entre el diseño de la práctica basada en la investigación y los resultados de esa práctica, y demuestra la necesidad de nuevas investigaciones para abordar los significados matemáticos de una comunidad estudiantil dentro de un marco sociocultural.

Handle: http://hdl.handle.net/10481/36050

WOS-ESCI

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdulwahed, M., Jaworski, B., & Crawford, A. (2012). Innovative approaches to teaching mathematics in higher education: A review and critique. Nordic Studies in Mathematics Education, 17(2), 49-68.

Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics thinking and learning at post secondary level. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 1011-1049). Charlotte, NC: Information Age Publishing.

Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced Mathematics Thinking (pp. 153-166). Dordrecht, The Netherlands: Kluwer.

Ernest, P. (1991). The philosophy of mathematics education. London, United Kingdom: Falmer Press.

Even, R., & Tirosh, D. (1995). Subject-matter knowledge and knowledge about students as sources of teacher presentations of the subject-matter. Educational Studies in Mathematics, 29(1), 1-20.

Hernández-Martínez, P., Williams, J., Black, L., Pampala, M., & Wake, G. (2011). Students' views on their transition from school to college mathematics: Rethinking 'transition' as an issue of identity. Research in Mathematics Education, 13(2), 119-130.

Hiebert, J. (1986). Conceptual and procedural knowledge: The case of mathematics. Hillslade, NJ: Erlbaum.

Jaworski, B. (2003). Research practice into/influencing mathematics teaching and learning development: Towards a theoretical framework based on co-learning partnerships. Educational Studies in Mathematics, 54(2-3), 249-282.

Jaworski, B. (2006). Theory and practice in mathematics teaching development: Critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher Education, 9(2), 187-211.

Jaworski, B., & Matthews, J. (2011). Developing teaching of mathematics to first year engineering students. Teaching Mathematics and its Applications, 30(4), 178-185.

Jaworski, B., Robinson, C., Matthews, J., & Croft, A. C. (2012). Issues in teaching mathematics to engineering students to promote conceptual understanding: A study of the use of GeoGebra and inquiry-based tasks. The International Journal for Technology in Mathematics Education, 19(4), 147-152.

Niss, M. (2003). The Danish “KOM” project and possible consequences for teacher education. In R. Straesser, G. Bradell, B. Grevholm, & O. Hellenius (Eds.), Educating for the future: Proceedings of an International Symposium on Mathematics Teacher Education (pp. 179-190). Gothenburg, Sweden: NCM, Gothenburg University.

Pilzer, S., Robinson, M., Lomen, D., Flath, D., Hughes Hallet, D., Lahme, B., Morris, J., McCallum, W., & Thrash, J. (2003). ConcepTests to accompany calculus (3rd ed.). Hoboken, NJ: John Wiley & Son.

Schmittau, J. (2003). Cultural-historical theory and mathematics education. In A. Kozulin, B. Gindis, V. S. Ageyev, & S. M. Miller (Eds.), Vygotsky's educational theory in cultural context (pp. 225-245). Cambridge, United Kingdom: Cambridge University Press.

SEFI - European Society for Engineering Education (2013). A framework for mathematics curricula in engineering education. A report of the mathematics working group. Brussels, Belgium: European Society for Engineering Education (SEFI). (Available at http://sefi.htw-aalen.de/)

Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.

Wenger, E. (1998). Communities of practice. Cambridge, United Kingdom: Cambridge University Press.

Wertsch, J. V. (1991). Voices of the mind. Cambridge, MA: Harvard University Press.

Descargas

Publicado

2015-06-01

Número

Sección

Artículos