Inferencia causal en investigación educativa: Análisis de la causalidad en estudios observacionales de carácter transversal

Autores/as

DOI:

https://doi.org/10.30827/relieve.v29i2.26843

Palabras clave:

Análisis causal, metodología estadística, evaluación, análisis de datos

Resumen

La suposición de relaciones causa-efecto en la investigación ex post facto es un problema ampliamente conocido en el ámbito de la metodología de investigación en ciencias sociales. Para abordar esta importante limitación, en los últimos años se ha extendido el empleo de técnicas de inferencia causal, un conjunto de procedimientos estadísticos establecidos para poder extraer conclusiones causales en investigaciones no experimentales. A pesar de su amplia popularidad y difusión en el ámbito de las ciencias sociales y de la salud, su uso en investigación educativa es todavía marginal. Así, este trabajo introduce las principales técnicas de inferencia causal disponibles para el investigador educativo cuando dispone de datos observacionales de panel. Tras abordar las características clave y el potencial de las técnicas de emparejamiento por puntuación de propensión, variables instrumentales y diseño de regresión discontinua, se presenta un ejemplo de aplicación de cada una de ellas empleando las bases de datos obtenidas en la evaluación PISA 2018. Se incluye la competencia matemática como variable dependiente en todos los modelos propuestos. Dada las diferentes características de cada una de estas técnicas, la variable independiente empleada varía en los tres modelos aplicados: asistencia a educación infantil en el emparejamiento por puntuación de propensión, expectativas académicas del estudiante en variables instrumentales y tamaño del municipio en el que se encuentra la escuela en diseño de regresión discontinua. Se concluye el artículo discutiendo el potencial de este conjunto de técnicas, teniendo en cuenta las necesidades y procedimientos metodológicos más habitualmente aplicados en la investigación educativa.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Fernando Martínez-Abad, Universidad de Salamanca, España

Profesor Titular en el Área de Métodos de Investigación y Diagnóstico en Educación de la Universidad de Salamanca y Director Adjunto del Máster Universitario en Evaluación e Investigación en Organizaciones y Contextos de Aprendizaje (MEVINAP). Su perfil docente se centra en el ámbito de la metodología de investigación en educación y el análisis de datos cuantitativo. Sus líneas investigadoras principales tratan sobre los factores asociados al rendimiento académico y el análisis de evaluaciones educativas internacionales a gran escala: eficacia escolar y equidad educativa. (email: fma@usal.es) 

Jaime León, Universidad de Las Palmas de Gran Canaria

Profesor Titular del área de Métodos de Investigación y Diagnóstico en Educación en la Universidad de Las Palmas de Gran Canaria. Su preocupación como profesor es que los maestros consigan optimizar el aprendizaje de sus alumnos, para ello incide en la educación basada en evidencias. Como investigador su preocupación es la misma, optimizar el aprendizaje y rendimiento del alumnado, especialmente de secundaria. Para ello, se centra en la identificación de factores susceptibles de modificar: calidad didáctica, lenguaje en el aula, pasión por el conocimiento, etc. Para conseguir que el profesor cambie en el aula se está centrando en diseñar un método que permita al profesor obtener feedback de su práctica docente. Algunas de sus publicaciones y proyectos se pueden consultar en jaimeleon.es/ULPGC (email: jaime.leon@ulpgc.es). 

Citas

Ali, M. S., Groenwold, R. H. H., Pestman, W. R., Belitser, S. V., Roes, K. C. B., Hoes, A. W., de Boer, A., & Klungel, O. H. (2014). Propensity score balance measures in pharmacoepidemiology: A simulation study. Pharmacoepidemiology and Drug Safety, 23(8), 802-811. https://doi.org/10.1002/pds.3574

Altman, M. (2020). A more scientific approach to applied economics: Reconstructing statistical, analytical significance, and correlation analysis. Economic Analysis and Policy, 66, 315-324. https://doi.org/10.1016/j.eap.2020.05.006

Amadon, S., Gormley, W. T., Claessens, A., Magnuson, K., Hummel-Price, D., & Romm, K. (2022). Does early childhood education help to improve high school outcomes? Results from Tulsa. Child Development, 93(4), e379-e395. https://doi.org/10.1111/cdev.13752Amini, C., & Nivorozhkin, E. (2015). The urban–rural divide in educational outcomes: Evidence from Russia. International Journal of Educational Development, 44, 118-133. https://doi.org/10.1016/j.ijedudev.2015.07.006

Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91(434), 444-455. https://doi.org/10.1080/01621459.1996.10476902

Antonakis, J., Bendahan, S., Jacquart, P., & Lalive, R. (2010). On making causal claims: A review and recommendations. The Leadership Quarterly, 21(6), 1086-1120. https://doi.org/10.1016/j.leaqua.2010.10.010

Austin, P. C. (2011). Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Statistics in Medicine, 30(11), 1292-1301. https://doi.org/10.1002/sim.4200

Barnett, W. S. (1998). Long-Term Cognitive and Academic Effects of Early Childhood Education on Children in Poverty. Preventive Medicine, 27(2), 204-207. https://doi.org/10.1006/pmed.1998.0275

Barnett, W. S., & Jung, K. (2021). Effects of New Jersey’s Abbott preschool program on children’s achievement, grade retention, and special education through tenth grade. Early Childhood Research Quarterly, 56, 248-259. https://doi.org/10.1016/j.ecresq.2021.04.001

Belitser, S. V., Martens, E. P., Pestman, W. R., Groenwold, R. H. H., de Boer, A., & Klungel, O. H. (2011). Measuring balance and model selection in propensity score methods. Pharmacoepidemiology and Drug Safety, 20(11), 1115-1129. https://doi.org/10.1002/pds.2188

Campbell, D. T., & Stanley, J. (1963). Experimental and quasi-experimental designs for research. Wadsworth Publishing.

Castro Aristizabal, G., Giménez, G., & Pérez Ximénez-De-Embún, D. (2017). Educational inequalities in latin america, PISA 2012: Causes of differences in school performance between public and private schools. Revista de Educación, 2017(376), 33-59. Scopus. https://doi.org/10.4438/1988-592X-RE-2017-376-343

Choi, A., Calero, J., & Escardíbul, J.-O. (2012). Private tutoring and academic achievement in Korea: An approach through PISA-2006. KEDI Journal of Educational Policy, 9(2), 299-322. Scopus.

Cinelli, C., Forney, A., & Pearl, J. (2022). A crash course in good and bad controls. Sociological Methods & Research, 00491241221099552. https://doi.org/10.1177/00491241221099552

Cordero, J. M., & Gil-Izquierdo, M. (2018). The effect of teaching strategies on student achievement: An analysis using TALIS-PISA-link. Journal of Policy Modeling, 40(6), 1313-1331. Scopus. https://doi.org/10.1016/j.jpolmod.2018.04.003

Courtney, J. R., Garcia, J. T., Rowberry, J., Eckberg, N., Dinces, S. M., Lobaugh, C. S., & Tolman, R. T. (2023). Measuring impact of New Mexico prekindergarten on standardized test scores and high school graduation using propensity score matching. International Journal of Child Care and Education Policy, 17(1), 9. https://doi.org/10.1186/s40723-023-00112-9

Crespo-Cebada, E., Pedraja-Chaparro, F., & Santín, D. (2014). Does school ownership matter? An unbiased efficiency comparison for regions of Spain. Journal of Productivity Analysis, 41(1), 153-172. Scopus. https://doi.org/10.1007/s11123-013-0338-y

Gamazo, A., & Martínez-Abad, F. (2020). An Exploration of Factors Linked to Academic Performance in PISA 2018 Through Data Mining Techniques. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.575167

García-Pérez, J.I., & Hidalgo-Hidalgo, M. (2017). No student left behind? Evidence from the Programme for School Guidance in Spain. Economics of Education Review, 60, 97-111. Scopus. https://doi.org/10.1016/j.econedurev.2017.08.006

Hill, A. D., Johnson, S. G., Greco, L. M., O’Boyle, E. H., & Walter, S. L. (2021). Endogeneity: A Review and agenda for the methodology-practice divide affecting micro and macro research. Journal of Management, 47(1), 105-143. https://doi.org/10.1177/0149206320960533

Huenermund, P., Louw, B., & Rönkkö, M. (2022). The choice of control variables: How causal graphs can inform the decision. Academy of Management Proceedings, 2022(1), 15534. https://doi.org/10.5465/AMBPP.2022.294

Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765-789. https://doi.org/10.1017/S0003055411000414

Imbens, G. W., & Kalyanaraman, K. (2012). Optimal bandwidth choice for the regression discontinuity estimator. Review of Economic Studies, 79(3), 933-959. Scopus. https://doi.org/10.1093/restud/rdr043

Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. Journal of Econometrics, 142(2), 615-635. Scopus. https://doi.org/10.1016/j.jeconom.2007.05.001

Imbens, G. W., & Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction.

Jin, S. (2022). On inconsistency of the overidentification test for the model-implied instrumental variable approach. Structural Equation Modeling. Scopus. https://doi.org/10.1080/10705511.2022.2122978

Kaplan, D. (2016). Causal inference with large-scale assessments in education from a Bayesian perspective: A review and synthesis. Large-Scale Assessments in Education, 4(1). Scopus. https://doi.org/10.1186/s40536-016-0022-6

Kerlinger, F. N., & Lee, H. (1999). Foundations of behavioral research (004 ed.). Wadsworth Publishing.

Lee, D. S., & Lemieux, T. (2010). Regression discontinuity designs in economics. Journal of Economic Literature, 48(2), 281-355. Scopus. https://doi.org/10.1257/jel.48.2.281

Levi, U., Einav, M., Ziv, O., Raskind, I., & Margalit, M. (2014). Academic expectations and actual achievements: The roles of hope and effort. European Journal of Psychology of Education, 29(3), 367-386. https://doi.org/10.1007/s10212-013-0203-4

Lopez-Agudo, L. A., González-Betancor, S. M., & Marcenaro-Gutierrez, O. D. (2021). Language at home and academic performance: The case of Spain. Economic Analysis and Policy, 69, 16-33. Scopus. https://doi.org/10.1016/j.eap.2020.11.003

Maydeu-Olivares, A., Shi, D., & Fairchild, A. J. (2020). Estimating causal effects in linear regression models with observational data: The instrumental variables regression model. Psychological Methods, 25(2), 243-258. https://doi.org/10.1037/met0000226

Martínez-Abad, F., Gamazo, A., & Rodríguez-Conde, M.-J. (2020). Educational Data Mining: Identification of factors associated with school effectiveness in PISA assessment. Studies in Educational Evaluation, 66, 100875. https://doi.org/10.1016/j.stueduc.2020.100875

McCoy, D. C., Yoshikawa, H., Ziol-Guest, K. M., Duncan, G. J., Schindler, H. S., Magnuson, K., Yang, R., Koepp, A., & Shonkoff, J. P. (2017). Impacts of Early Childhood Education on Medium- and Long-Term Educational Outcomes. Educational Researcher, 46(8), 474-487. https://doi.org/10.3102/0013189X17737739

McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A density test. Journal of Econometrics, 142(2), 698-714. https://doi.org/10.1016/j.jeconom.2007.05.005

OECD. (2009). PISA Data Analysis Manual: SPSS, Second Edition. Organisation for Economic Co-operation and Development. https://doi.org/10.1787/19963777

OECD. (2019). PISA 2018 Assessment and Analytical Framework. OECD Publishing. https://doi.org/10.1787/b25efab8-en

Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Falta editorial

Pokropek, A. (2016). Introduction to instrumental variables and their application to large-scale assessment data. Large-Scale Assessments in Education, 4(1). https://doi.org/10.1186/s40536-016-0018-2

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55. https://doi.org/10.2307/2335942

Rosenbaum, P. R., & Rubin, D. B. (2022). Propensity scores in the design of observational studies for causal effects. Biometrika, asac054. https://doi.org/10.1093/biomet/asac054

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688-701. https://doi.org/10.1037/h0037350

Rutkowski, D., & Delandshere, G. (2016). Causal inferences with large scale assessment data: Using a validity framework. Large-scale Assessments in Education, 4(1), 6. https://doi.org/10.1186/s40536-016-0019-1

Sanders, C. E., Field, T. M., & Diego, M. A. (2001). Adolescents’ academic expectations and achievement. Adolescence, 36(144), 795-802.

Song, Q., & Tan, C. Y. (2022). The association between family socioeconomic status and urban–rural and high-school attainment gaps: A logistic regression analysis of the China Family Panel Studies data. British Educational Research Journal, 48(6), 1102-1124. https://doi.org/10.1002/berj.3817

Stock, J., & Yogo, M. (2005). Testing for weak instruments in linear iv regression. En D. W. K. Andrews, Identification and Inference for Econometric Models (pp. 80-108). Cambridge University Press.

Suárez-Álvarez, J., Fernández-Alonso, R., & Muñiz, J. (2014). Self-concept, motivation, expectations, and socioeconomic level as predictors of academic performance in mathematics. Learning and Individual Differences, 30, 118-123. https://doi.org/10.1016/j.lindif.2013.10.019

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data, second edition. Revisar

Zhang, Z., Kim, H. J., Lonjon, G., & Zhu, Y. (2019). Balance diagnostics after propensity score matching. Annals of Translational Medicine, 7(1), 16. https://doi.org/10.21037/atm.2018.12.10

Publicado

2023-12-11

Cómo citar

Martínez-Abad, F., & León, J. (2023). Inferencia causal en investigación educativa: Análisis de la causalidad en estudios observacionales de carácter transversal. RELIEVE - Revista Electrónica De Investigación Y Evaluación Educativa, 29(2). https://doi.org/10.30827/relieve.v29i2.26843