Contenido principal del artículo

George Santi
Università di Bologna, Italia
Anna Baccaglini-Frank
Università degli Studi di Modena e Reggio Emilia, Italia
Biografía
Vol. 9 Núm. 3: Número monográfico en Generalización (Marzo, 2015), Artículos, Páginas 217-243
DOI: https://doi.org/10.30827/pna.v9i3.6103
Recibido: jun 24, 2017 Aceptado: jun 24, 2017 Publicado: mar 1, 2015

Resumen

We shift the view of a special needs student away from the acknowledged view, that is as a student who requires interventions to restore a currently expected functioning behaviour, introducing a new paradigm to frame special needs students’ learning of mathematics. We use the theory of objectification and the new paradigm to look at (and characterize) students’ learning experiences in mathematics as generalizing reflexive mediated activity. In particular, from this perspective, we present examples of shifts to higher levels of generalization of a student with mathematical learning difficulties working with Mak-Trace, a Logo-like educational software for the iPad.

Formas de generalización en estudiantes con dificultades de aprendizaje en matemáticas

En este artículo introducimos un nuevo paradigma para enmarcar el aprendizaje de las matemáticas de alumnos con necesidades especiales. Consideramos una visión de los estudiantes con necesidades especiales diferente a la comúnmente aceptada que los considera como estudiantes que requieren intervención para reestablecer el comportamiento actualmente esperado. Utilizamos la teoría de la objetivización y ese nuevo paradigma para observar (y caracterizar) las experiencias de aprendizaje de las matemáticas entendido como actividad reflexiva y mediada de generalización. En particular, desde esta perspectiva proponemos ejemplos de acceso a niveles superiores de generalización de un estudiante con dificultades de aprendizaje de las matemáticas que utiliza Mak-Trace, un software didáctico para iPad parecido a Logo.

Handle: http://hdl.handle.net/10481/34993

WOS-ESCI

Nº de citas en WOS (2017): 1 (Citas de 2º orden, 1)

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Citas

Atkinson, B. (1984). Learning disabled students and Logo. Journal of Learning Disabilities, 17(8), 500-501.

Baccaglini-Frank, A., Antonini, S., Robotti, E., & Santi, G. (2014). Juggling reference frames in the microworld Mak-Trace: The case of a student with MLD. In C. Nicol, P. Liljedahl, S. Oesterle, & D. Allan. (Eds.), Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (Vol. 2, pp. 81-88). Vancouver, Canada: PME.

Canevaro, A. (1999). Pedagogia speciale: la riduzione dell'handicap [Special pedagogy: the reduction of handicap]. Milan, Roma: Edizioni Bruno Mondadori.

Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. In F. Hitt & M. Santos (Eds.), Proceedings of the Twentieth-First Annual Meeting North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 3-26). Cuernavaca, Mexico: PME.

Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162.

Giorgi, G., & Baccaglini-Frank, A. (2011). Mak-Trace. [Application]. Available from: http://itunes.apple.com/it/app/maktrace/id467939313?m t=8.

Grush, R. (2000). Self, world, and space: The meaning and mechanisms of ego- and allocentric spatial representation. Brain and Mind, 1, 59-92.

Heyd-Metzuyanim, E. (2012). The co-construction of learning difficulties in mathematics-teacherstudent interactions and their role in the development of a disabled mathematical identity. Educational Studies in Mathematics, 83(3), 341-368.

Ilyenkov, E. (1977). 'The concept of the ideal', in Philosophy in the USSR: Problems of dialectical materialism. Moscow, Russia: Progress Publishers.

Kieran, C. (1989) A perspective on algebraic thinking. In G. Vern, J. Rogalski, & M. Artigue (Eds.), Proceedings of the 13th International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 163-171). Paris, France: Laboratoire PSYDEE.

Küchemann, D. (1981). Algebra. In K. Hart (Ed.), Children's understanding of mathematics 11-16 (pp. 102-119). London, United Kingdom: Murray.

Küchemann, D., & Hoyles, C. (2009). From empirical to structural reasoning in mathematics: Tracking changes over time. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof across the grades. A K-16 perspective (pp. 171-191). Hillsdale, NJ: Lawrence Erlbaum.

Laborde, C. (1993). The Computer as part of the learning environment: The case of geometry. In C. Keitel & K. Ruthven (Eds.), Learning from computers: Mathematics education and technology (Vol. 121, pp. 48-67). Berlin and Heidelberg, Germany: NATO ASI Series, Springer-Verlag.

Leont'ev, A. N. (1978). Activity, consciousness, and personality. New Jersey, NJ: Prentice-Hall.

Maddux, C. (1984). Using microcomputers with the learning disabled: Will the potential be realized? Educational Computer, 4(1), 31-32.

Michayluk, J. O., & Saklofske, D. H. (1988). Logo and special education. Canadian Journal of Special Education, 4(1), 43-48.

Miller, P. (2009). Learning with a missing sense: What can we learn from the interaction of a deaf child with a turtle? American Annals of the Deaf, 154(1), 71-82.

Ministero dell'Istruzione dell'Università e della Ricerca (MIUR) (2012). La via italiana all'inclusione scolastica, Seminario Nazionale [Italian way to scholar inclusion, National Seminary], Roma, Italy. Accessed on May 12, 2014: http://hubmiur.pubblica.istruzione.it/web/istruzione/disabilita/inclusione-scolastica.

Papert, S. (1980). Mindstorms. New York, NY: Basic Books.

Radford, L. (2003). Gestures, speech, and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37-70.

Radford, L. (2004). La généralisation mathématique comme processus sémiotique [Mathematical generalization as a semiotic process]. In G. Arrigo (Ed.), Atti del convegno di didattica della matematica 2004, Alta Scuola Pedagogica (pp. 11-27). Locarno, Switzerland: Divisione della scuola. Centro didattico cantonale.

Radford, L. (2005). Body, tool, and symbol: Semiotic reflections on cognition. In E. Simmt & B. Davis (Eds.), Proceedings of the 2004 Annual Meeting of the Canadian Mathematics Education Study Group (pp. 111-117). Québec, Canada: CMESG.

Radford, L (2006). The anthropology of meaning. Educational Studies in Mathematics, 61(1-2), 39-65.

Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 215-234). Rotterdam, The Netherlands: Sense Publishers.

Ratcliff, C., & Anderson, S.E. (2011). Reviving the turtle: Exploring the use of Logo with students with mild disabilities. Computers in the Schools, 28(3), 241-255.

Roth, W.-M., & Radford, L. (2011). A cultural historical perspective on teaching and learning. Rotterdam, The Netherlands: Sense Publishers.

Russell, S. J. (1986). But what are they learning? The dilemma of using microcomputers in special education. Learning Disability Quarterly, 9(2), 100-104.

Sfard, A. (2014, April). Conversation: Anna Baccaglini-Frank's questions about learning difficulties in mathematics. Work presented at the Naples's Seminar at the University Federico II, Naples, Italy.

Vasu, E. S., & Tyler, D. K. (1997). A comparison of the critical thinking skills and spatial ability of fifth grade children using simulation software or Logo. Journal of Computing in Childhood Education, 8(4), 345-363.

Vygotsky, L. (1929). The fundamental problems of defectology. Retrieved online April 24, 2014, from: http://www.marxists.org/archive/vygotsky/works/1929 /defectology/

Vygotsky, L. (1962). Thought and language. (E. Hanfmann & G. Vakar, Eds. and Trans.) Cambridge, MA: MIT Press.