ASSESSMENT OF GENERIC COMPETENCIES IN CIVIL ENGINEERING STUDENTS DURING PRE-PROFESSIONAL INTERNSHIPS

Authors

DOI:

https://doi.org/10.30827/eticanet.v25i1.32771

Keywords:

generic competencies, civil engineering, pre-professional internships, work experience questionnaire, professional success

Abstract

Pre-professional internships are crucial in training civil engineering students, as they foster the development of generic competencies essential for professional success and workplace adaptability. This study assessed these competencies using a quantitative, descriptive, and correlational approach with a cross-sectional design through an adapted and validated Work Experience Questionnaire (WEQ) version. Ninety-five students from the seventh and eighth levels at Salesian Polytechnic University were surveyed, focusing on Clear Goals, Workplace Support, University Support, and Generic Competencies. The instrument's reliability was confirmed with high Cronbach's alpha values (>0.90), and exploratory (EFA) and confirmatory factor analyses (CFA) supported its structural validity. The findings revealed that Clear Goals (r = 0.867) and Workplace Support (r = 0.838) significantly influence the development of generic competencies. In contrast, University Support (r = 0.690) showed a moderate effect. The multiple regression analysis corroborated these results. This study highlights the need for an integrated academic and workplace environment to maximize the impact of internships on the training of future civil engineers. A collaborative approach between universities and companies would not only facilitate the alignment of learning objectives with the demands of the labour market. However, it would also allow students to receive more structured and continuous support during their practical experience.

Downloads

References

Belchior-Rocha, H., Casquilho-Martins, I., & Simões, E. (2022). Transversal Competencies for Employability: From Higher Education to the Labour Market. Education Sciences, 12(4), 255. https://doi.org/10.3390/educsci12040255 DOI: https://doi.org/10.3390/educsci12040255

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588 DOI: https://doi.org/10.1037//0033-2909.88.3.588

Bicaj, A., Berisha, F., & Gisewhite, R. (2024). Exploring In-Service Science Teachers’ Self-Perceptions of Competence and Pedagogical Approaches to Socioscientific Issues in Education. Education Sciences, 14(11), 1249. https://doi.org/10.3390/educsci14111249 DOI: https://doi.org/10.3390/educsci14111249

Cedeño, L., & Santos, J. (2017a). Cita sugerida (APA, sexta edición). Revista Conrado, 13(58), 30–35. http://conrado.ucf.edu.cu/index.php/conrado

Cedeño, L., & Santos, J. (2017b). Pre-professional practice: via for integral professional training sinde its investigation impacts. Revista Conrado, 13(58), 30–35. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202017000300016&lng=es&tlng=es.

Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98–104. https://doi.org/10.1037/0021-9010.78.1.98 DOI: https://doi.org/10.1037//0021-9010.78.1.98

Ferreira, C., Gabriel, B., Valente, R., Andrade-Campos, A., Dias-de-Oliveira, J., Neto, V., Soares, S., Carvalho, T., & Figueiredo, C. (2024). In Search of a More Balanced Engineering Curriculum: The Perspective of Students, Teachers, Alumni and Employers. Trends in Higher Education, 3(1), 142–154. https://doi.org/10.3390/higheredu3010008 DOI: https://doi.org/10.3390/higheredu3010008

Fiallos, G. (2021). La Correlación de Pearson y el proceso de regresión por el Método de Mínimos Cuadrados. Ciencia Latina Revista Científica Multidisciplinar, 5(3), 2491–2509. https://doi.org/10.37811/cl_rcm.v5i3.466 DOI: https://doi.org/10.37811/cl_rcm.v5i3.466

Goteng, G. L., Shohel, M. M. C., & Tariq, F. (2022). Enhancing Student Employability in Collaboration with the Industry: Case Study of a Partnership with Amazon Web Services Academy. Education Sciences, 12(6), 366. https://doi.org/10.3390/educsci12060366 DOI: https://doi.org/10.3390/educsci12060366

Guarnizo Crespo, S. F. (2018). Importancia de las prácticas pre profesionales para los estudiantes de Educación Superior en la Universidad de Guayaquil. INNOVA Research Journal, 3(8), 14–26. https://doi.org/10.33890/innova.v3.n8.2018.717 DOI: https://doi.org/10.33890/innova.v3.n8.2018.717

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118 DOI: https://doi.org/10.1080/10705519909540118

Izquierdo Bautista, J. (2020). Métodos de análisis estadístico con datos dispersos. Ingeniería y Región, 24, 86–98. https://doi.org/10.25054/22161325.2537 DOI: https://doi.org/10.25054/22161325.2537

Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151–1169. https://doi.org/10.6018/analesps.30.3.199361 DOI: https://doi.org/10.6018/analesps.30.3.199361

Luk, L. Y. Y., & Chan, C. K. Y. (2020a). Adaptation and validation of the Work Experience Questionnaire for investigating engineering students’ internship experience. Journal of Engineering Education, 109(4), 801–820. https://doi.org/10.1002/jee.20351

Luk, L. Y. Y., & Chan, C. K. Y. (2020b). Adaptation and validation of the Work Experience Questionnaire for investigating engineering students’ internship experience. Journal of Engineering Education, 109(4), 801–820. https://doi.org/10.1002/jee.20351 DOI: https://doi.org/10.1002/jee.20351

Martin, E. (1997). The effectiveness of different models ofwork-based university education. Evaluations and Investigations Program, Higher Education Division. http://www.dest.gov.au/archive/highered/eippubs/eip9619/front.htm

McAlexander, S. L., Blanchard, M. R., & Venditti, R. A. (2024). Transfer Students’ Perceptions of Science and Engineering Internships. Sustainability, 16(15), 6429. https://doi.org/10.3390/su16156429 DOI: https://doi.org/10.3390/su16156429

Narayanaswamy, R., Albers, C. S., Knotts, T. L., & Albers, N. D. (2024). Sustaining and Reinforcing the Perceived Value of Higher Education: E-Learning with Micro-Credentials. Sustainability, 16(20), 8860. https://doi.org/10.3390/su16208860 DOI: https://doi.org/10.3390/su16208860

Nogueira, T., Magano, J., Fontão, E., Sousa, M., & Leite, Â. (2021). Engineering Students’ Industrial Internship Experience Perception and Satisfaction: Work Experience Scale Validation. Education Sciences, 11(11), 671. https://doi.org/10.3390/educsci11110671 DOI: https://doi.org/10.3390/educsci11110671

Ragusa, A., Caggiano, V., Trigueros Ramos, R., González-Bernal, J. J., Gentil-Gutiérrez, A., Bastos, S. A. M. C., González-Santos, J., & Santamaría-Peláez, M. (2022). High Education and University Teaching and Learning Processes: Soft Skills. International Journal of Environmental Research and Public Health, 19(17), 10699. https://doi.org/10.3390/ijerph191710699 DOI: https://doi.org/10.3390/ijerph191710699

Rajabzadeh, A. R., Long, J., Saini, G., & Zeadin, M. (2022). Engineering Student Experiences of Group Work. Education Sciences, 12(5), 288. https://doi.org/10.3390/educsci12050288 DOI: https://doi.org/10.3390/educsci12050288

Roco-Videla, Á., Flores, S. V., Olguín-Barraza, M., & Maureira-Carsalade, N. (2023). Cronbach’s alpha and its confidence interval. Nutrición Hospitalaria, 38(4), 877–878. https://doi.org/10.20960/nh.04961 DOI: https://doi.org/10.20960/nh.04961

Terán, S. (2019). Guía metodoloógica para evaluar estadísticamente la incidencia de las prácticas pre-profesionales en la formación y ejercicio del futuro ingeniero civil. Pontificia Universidad Católica del Ecuador.

Published

2025-06-06