La nanotecnología y el diagnóstico/tratamiento de la leishmaniasis.

Autores/as

  • CI Remígio Henriques Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, España.
  • MA Ruiz Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, España.
  • JL Arias Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, España.

Palabras clave:

Diagnóstico, Farmacoterapia, Leishmaniasis, Nanopartícula, Transporte de Fármacos.

Resumen

Objetivos: Este trabajo pretende actualizar la situación actual en el diseño de nanoplataformas contra la leishmaniasis. En este sentido, especial atención merecen los nanotransportadores de fármacos diseñados para ser administrados al paciente a través de las vías de administración parenteral, tópica y oral. Asimismo, se discuten las posibilidades que ofrecen las técnicas o estrategias de formulación más avanzadas en el diseño de estas nanoplataformas biomédicas. Finalmente, también se dedica especial atención a la utilización de estos nanosistemas en la administración de vacunas y en el diagnóstico de la leishmaniasis.

Material y Métodos: Con este fin, se utilizaron las páginas Web PubMed, HCAplus, Thomson y Registry como principales fuentes para la búsqueda de los trabajos de investigación más interesantes publicados sobre la materia. La información así obtenida fue cuidadosamente analizada, resaltando aquellos resultados preclínicos más relevantes en cuanto al desarrollo de nanomedicamentos contra la leishmaniasis, y considerando también los nanosistemas transportadores de vacunas y las nanoplataformas de utilidad en el diagnóstico de esta enfermedad.

Resultados y conclusiones: La nanotecnología es utilizada para mejorar el diagnóstico y tratamiento de la leishmaniasis. El objetivo es, en todos los casos, la mejora de la selectividad por el parásito de los fármacos, vacunas y moléculas utilizadas como agentes de contraste en técnicas de imagen, especialmente cuando este microorganismo se encuentra localizado en el interior de macrófagos y neutrófilos. Con esta interesante nanoherramienta, se puede también obtener una significativa reducción en la aparición y severidad de la toxicidad asociada a las técnicas de diagnóstico y tratamiento de la leishmaniasis. Es evidente que sólo con un inteligente diseño de estos nanosistemas se logran los mejores resultados de diagnóstico y terapia de la enfermedad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

El-Tonsy MMS. Nanotechnology and nanomedicine applications in parasitic diseases. Parasitologists United Journal (PUJ). 2010;3(1-2):19-26.

Romero EL, Morilla MJ. Drug delivery systems against leishmaniasis? Still an open question. Expert Opin Drug Deliv. 2008;5(7):805-823.

Scott P. Leishmania--a parasitized parasite. N Engl J Med. 2011;364(18):1773-1774.

Croft SL, Coombs GH. Leishmaniasis--current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19(11):502-508.

Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19(1):111-126.

Silva N, Ponte-Sucre A. ABC protein in Leishmania mexicana: modulation of parasite-host cell interaction. Archivos Venezolanos de Farmacología y Terapéutica (AVFT). 2001;20(2):134-138.

Leprohon P, Légaré D, Girard I, Papadopoulou B, Ouellette M. Modulation of Leishmania ABC protein gene expression through life stages and among drug-resistant parasites. Eukaryot Cell. 2006;5(10):1713-1725.

Tiuman TS, Santos AO, Ueda-Nakamura T, Filho BP, Nakamura CV. Recent advances in leishmaniasis treatment. Int J Infect Dis. 2011;15(8):e525-e532.

Yardley V, Khan AA, Martin MB, et al. In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii. Antimicrob Agents Chemother. 2002;46(3):929-931.

Rodriguez N, Bailey BN, Martin MB, Oldfield E, Urbina JA, Docampo R. Radical cure of experimental cutaneous leishmaniasis by the bisphosphonate pamidronate. J Infect Dis. 2002;186(1):138-140.

Ortiz-Gómez A, Jiménez C, Estévez AM, Carrero-Lérida J, Ruiz-Pérez LM, González-Pacanowska D. Farnesyl diphosphate synthase is a cytosolic enzyme in Leishmania major promastigotes and its overexpression confers resistance to risedronate. Eukaryot Cell. 2006;5(7):1057-1064.

Arevalo I, Ward B, Miller R, et al. Successful treatment of drug-resistant cutaneous leishmaniasis in humans by use of imiquimod, an immunomodulator. Clin Infect Dis. 2001;33(11):1847-1851.

Surjana D, Halliday GM, Damian DL. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J Nucleic Acids. 2010;2010(2010). Article ID: 157591, 13 pages.

Sereno D, Vergnes B, Mathieu-Daude F, Cordeiro da Silva A, Ouaissi A. Looking for putative functions of the Leishmania cytosolic SIR2 deacetylase. Parasitol Res. 2006;100(1):1-9.

Wang MZ, Zhu X, Srivastava A, et al. Novel arylimidamides for treatment of visceral leishmaniasis. Antimicrob Agents Chemother. 2010;54(6):2507-2516.

Monzote L, Montalvo AM, Scull R, Miranda M, Abreu J. Combined effect of the essential oil from Chenopodium ambrosioides and antileishmanial drugs on promastigotes of Leishmania amazonensis. Rev Inst Med Trop Sao Paulo. 2007;49(4):257-260.

Momeni A, Rasoolian M, Momeni A, et al. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis. J Liposome Res. 2013;23(2):134-144.

Balasegaram M, Ritmeijer K, Lima MA, et al. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin Emerg Drugs. 2012;17(4):493-510.

Ferreira LS, Ramaldes GA, Nunan EA, Ferreira LA. In vitro skin permeation and retention of paromomycin from liposomes for topical treatment of the cutaneous leishmaniasis. Drug Dev Ind Pharm. 2004;30(3):289-296.

Demicheli C, Ochoa R, da Silva JB, et al. Oral delivery of meglumine antimoniate-beta-cyclodextrin complex for treatment of leishmaniasis. Antimicrob Agents Chemother. 2004;48(1):100-103.

Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv. 2009;6(11):1175-1194.

Singh RK, Srivastava A, Gour JK, Tiwari VK. Targeting Leishmania species: nanotechnological prospects. Advanced Science Letters. 2012;5(1):11-20.

Petit C, Yardley V, Gaboriau F, Bolard J, Croft SL. Activity of a heat-induced reformulation of amphotericin B deoxycholate (fungizone) against Leishmania donovani. Antimicrob Agents Chemother. 1999;43(2):390-392.

Glasser JS, Murray CK. Central nervous system toxicity associated with liposomal amphotericin B therapy for cutaneous leishmaniasis. Am J Trop Med Hyg. 2011;84(4):566-568.

Manosroi A, Kongkaneramit L, Manosroi J. Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm. 2004;270(1-2):279-286.

Gupta S, Dube A, Vyas SP. Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. J Drug Target. 2007;15(6):437-444.

Pal A, Gupta S, Jaiswal A, Dube A, Vyas SP. Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis. J Liposome Res. 2012;22(1):62-71.

Ghadiri M, Fatemi S, Vatanara A, et al. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm. 2012;424(1-2):128-137.

Nelson KG, Bishop JV, Ryan RO, Titus R. Nanodisk-associated amphotericin B clears Leishmania major cutaneous infection in susceptible BALB/c mice. Antimicrob Agents Chemother. 2006;50(4):1238-1244.

Asthana S, Jaiswal AK, Gupta PK, Pawar VK, Dube A, Chourasia MK. Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob Agents Chemother. 2013;57(4):1714-1722.

Italia JL, Kumar MN, Carter KC. Evaluating the potential of polyester nanoparticles for per oral delivery of amphotericin B in treating visceral leishmaniasis. J Biomed Nanotechnol. 2012;8(4):695-702.

Paul M, Durand R, Boulard Y, et al. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target. 1998;5(6):481-490.

Frézard F, Martins PS, Bahia AP, et al. Enhanced oral delivery of antimony from meglumine antimoniate/beta-cyclodextrin nanoassemblies. Int J Pharm. 2008;347(1-2):102-108.

Kayser O, Olbrich C, Yardley V, Kiderlen AF, Croft SL. Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm. 2003;254(1):73-75.

Das S, Roy P, Mondal S, Bera T, Mukherjee A. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf B Biointerfaces. 2013;107:27-34.

Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34(7):945-953.

Garnier T, Croft SL. Topical treatment for cutaneous leishmaniasis. Curr Opin Investig Drugs. 2002;3(4):538-544.

Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3-19.

Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67(11):2576-2597.

Ménez C, Legrand P, Rosilio V, Lesieur S, Barratt G. Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B. Mol Pharm. 2007;4(2):281-288.

Kansal S, Tandon R, Dwivedi P, et al. Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: a system for intervention in visceral leishmaniasis. J Antimicrob Chemother. 2012;67(11):2650-2660.

Veerareddy PR, Vobalaboina V, Ali N. Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanospheres. J Drug Target. 2009;17(2):140-147.

Kedzierski L, Sakthianandeswaren A, Curtis JM, Andrews PC, Junk PC, Kedzierska K. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem. 2009;16(5):599-614.

Doroud D, Zahedifard F, Vatanara A, Najafabadi AR, Rafati S. Cysteine proteinase type I, encapsulated in solid lipid nanoparticles induces substantial protection against Leishmania major infection in C57BL/6 mice. Parasite Immunol. 2011;33(6):335-348.

Doroud D, Vatanara A, Zahedifard F, et al. Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations. J Pharm Pharm Sci. 2010;13(3):320-35.

Santos DM, Carneiro MW, de Moura TR, et al. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int J Nanomedicine. 2012;7:2115-2127.

Tafaghodi M, Eskandari M, Kharazizadeh M, Khamesipour A, Jaafari MR. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins. Trop Biomed. 2010;27(3):639-650.

Heravi Shargh V, Jaafari MR, Khamesipour A, et al. Cationic liposomes containing soluble Leishmania antigens (SLA) plus CpG ODNs induce protection against murine model of leishmaniasis. Parasitol Res. 2012;111(1):105-114.

Firouzmand H, Badiee A, Khamesipour A, et al. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA). Acta Trop. 2013;128(3):528-535.

Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818-5878.

Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem. 2007;53(11):2002-2009.

Li L, Li J, Jin H, et al. Detection of Leishmania donovani infection using magnetic beads-based serum peptide profiling by MALDI-TOF MS in mice model. Parasitol Res. 2012;110(3):1287-1290.

Zhang J, Song S, Zhang L, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc. 2006;128(26):8575-8580.

Mohan S, Srivastava P, Maheshwari SN, Sundar S, Prakash R. Nano-structured nickel oxide based DNA biosensor for detection of visceral leishmaniasis (Kala-azar). Analyst. 2011;136(13):2845-2851.

Choi J, Lim JH, Rho S, Jahng D, Lee J, Kim KJ. Nanoporous niobium oxide for label-free detection of DNA hybridization events. Talanta. 2008;74(4):1056-1059.

Yang Y, Wang Z, Yang M, et al. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes. Anal Chim Acta. 2007;584(2):268-274.

Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett. 2007;2(6):265-281.

Ballou B, Ernst LA, Andreko S, et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem. 2007;18(2):389-396.

Wang L, Wang K, Santra S, et al. Watching silica nanoparticles glow in the biological world. Analytical Chemistry. 2006;78(3):646-654.

Yan J, Estévez MC, Smith JE, et al. Dye-doped nanoparticles for bioanalysis. Nano Today. 2007;2(3):44-50.

Descargas

Publicado

2014-09-20

Cómo citar

1.
Remígio Henriques C, Ruiz M, Arias J. La nanotecnología y el diagnóstico/tratamiento de la leishmaniasis. Ars Pharm [Internet]. 20 de septiembre de 2014 [citado 4 de enero de 2025];55(3):1-10. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/4495

Número

Sección

Artículos de revisión