Nanotechnology and the diagnosis/treatment of leishmaniasis.

Authors

  • CI Remígio Henriques Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, España.
  • MA Ruiz Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, España.
  • JL Arias Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, España.

Keywords:

Diagnosis, Drug Delivery, Drug Therapy, Leishmaniasis, Nanoparticle

Abstract

Aim: The review article updates the current state of the art in the engineering of nanoplatforms against leishmaniasis. Special attention is devoted to the development of drug nanocarriers to be given to patients through the parenteral, topical, and oral routes of administration. Challenges and opportunities coming from advanced formulation methods/strategies introduced in the design of these nanosystems are emphasized. Finally, particular attention is also given to the use of nanoparticulate systems for vaccine delivery and for the diagnosis of the disease.

Materials and Methods: To that aim, the Web sites of PubMed, HCAplus, Thomson, and Registry were used as the main sources to perform the search for the most significant research articles published on the subject. The information was then carefully analyzed, highlighting the most important preclinical results in the development of nanomedicines against leishmaniasis, as well considering vaccine delivery systems and nanoparticulate-based diagnosis.

Results and Conclusion: The introduction of nanotechnology into the leishmaniasis arena is intended to optimize both the diagnosis and treatment (drug/vaccine therapy) of the disease. The objective is always to improve the selectivity of the imaging molecules or drugs/vaccines toward the parasite, especially when it is located inside phagocytic cells and neutrophils, while keeping to a very minimum the toxic side effects. Of course, only the wise engineering of the nanoparticulate delivery system will assure the best diagnostic/therapeutic outcomes.

Downloads

Download data is not yet available.

References

El-Tonsy MMS. Nanotechnology and nanomedicine applications in parasitic diseases. Parasitologists United Journal (PUJ). 2010;3(1-2):19-26.

Romero EL, Morilla MJ. Drug delivery systems against leishmaniasis? Still an open question. Expert Opin Drug Deliv. 2008;5(7):805-823.

Scott P. Leishmania--a parasitized parasite. N Engl J Med. 2011;364(18):1773-1774.

Croft SL, Coombs GH. Leishmaniasis--current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19(11):502-508.

Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19(1):111-126.

Silva N, Ponte-Sucre A. ABC protein in Leishmania mexicana: modulation of parasite-host cell interaction. Archivos Venezolanos de Farmacología y Terapéutica (AVFT). 2001;20(2):134-138.

Leprohon P, Légaré D, Girard I, Papadopoulou B, Ouellette M. Modulation of Leishmania ABC protein gene expression through life stages and among drug-resistant parasites. Eukaryot Cell. 2006;5(10):1713-1725.

Tiuman TS, Santos AO, Ueda-Nakamura T, Filho BP, Nakamura CV. Recent advances in leishmaniasis treatment. Int J Infect Dis. 2011;15(8):e525-e532.

Yardley V, Khan AA, Martin MB, et al. In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii. Antimicrob Agents Chemother. 2002;46(3):929-931.

Rodriguez N, Bailey BN, Martin MB, Oldfield E, Urbina JA, Docampo R. Radical cure of experimental cutaneous leishmaniasis by the bisphosphonate pamidronate. J Infect Dis. 2002;186(1):138-140.

Ortiz-Gómez A, Jiménez C, Estévez AM, Carrero-Lérida J, Ruiz-Pérez LM, González-Pacanowska D. Farnesyl diphosphate synthase is a cytosolic enzyme in Leishmania major promastigotes and its overexpression confers resistance to risedronate. Eukaryot Cell. 2006;5(7):1057-1064.

Arevalo I, Ward B, Miller R, et al. Successful treatment of drug-resistant cutaneous leishmaniasis in humans by use of imiquimod, an immunomodulator. Clin Infect Dis. 2001;33(11):1847-1851.

Surjana D, Halliday GM, Damian DL. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J Nucleic Acids. 2010;2010(2010). Article ID: 157591, 13 pages.

Sereno D, Vergnes B, Mathieu-Daude F, Cordeiro da Silva A, Ouaissi A. Looking for putative functions of the Leishmania cytosolic SIR2 deacetylase. Parasitol Res. 2006;100(1):1-9.

Wang MZ, Zhu X, Srivastava A, et al. Novel arylimidamides for treatment of visceral leishmaniasis. Antimicrob Agents Chemother. 2010;54(6):2507-2516.

Monzote L, Montalvo AM, Scull R, Miranda M, Abreu J. Combined effect of the essential oil from Chenopodium ambrosioides and antileishmanial drugs on promastigotes of Leishmania amazonensis. Rev Inst Med Trop Sao Paulo. 2007;49(4):257-260.

Momeni A, Rasoolian M, Momeni A, et al. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis. J Liposome Res. 2013;23(2):134-144.

Balasegaram M, Ritmeijer K, Lima MA, et al. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin Emerg Drugs. 2012;17(4):493-510.

Ferreira LS, Ramaldes GA, Nunan EA, Ferreira LA. In vitro skin permeation and retention of paromomycin from liposomes for topical treatment of the cutaneous leishmaniasis. Drug Dev Ind Pharm. 2004;30(3):289-296.

Demicheli C, Ochoa R, da Silva JB, et al. Oral delivery of meglumine antimoniate-beta-cyclodextrin complex for treatment of leishmaniasis. Antimicrob Agents Chemother. 2004;48(1):100-103.

Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv. 2009;6(11):1175-1194.

Singh RK, Srivastava A, Gour JK, Tiwari VK. Targeting Leishmania species: nanotechnological prospects. Advanced Science Letters. 2012;5(1):11-20.

Petit C, Yardley V, Gaboriau F, Bolard J, Croft SL. Activity of a heat-induced reformulation of amphotericin B deoxycholate (fungizone) against Leishmania donovani. Antimicrob Agents Chemother. 1999;43(2):390-392.

Glasser JS, Murray CK. Central nervous system toxicity associated with liposomal amphotericin B therapy for cutaneous leishmaniasis. Am J Trop Med Hyg. 2011;84(4):566-568.

Manosroi A, Kongkaneramit L, Manosroi J. Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm. 2004;270(1-2):279-286.

Gupta S, Dube A, Vyas SP. Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. J Drug Target. 2007;15(6):437-444.

Pal A, Gupta S, Jaiswal A, Dube A, Vyas SP. Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis. J Liposome Res. 2012;22(1):62-71.

Ghadiri M, Fatemi S, Vatanara A, et al. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm. 2012;424(1-2):128-137.

Nelson KG, Bishop JV, Ryan RO, Titus R. Nanodisk-associated amphotericin B clears Leishmania major cutaneous infection in susceptible BALB/c mice. Antimicrob Agents Chemother. 2006;50(4):1238-1244.

Asthana S, Jaiswal AK, Gupta PK, Pawar VK, Dube A, Chourasia MK. Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob Agents Chemother. 2013;57(4):1714-1722.

Italia JL, Kumar MN, Carter KC. Evaluating the potential of polyester nanoparticles for per oral delivery of amphotericin B in treating visceral leishmaniasis. J Biomed Nanotechnol. 2012;8(4):695-702.

Paul M, Durand R, Boulard Y, et al. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target. 1998;5(6):481-490.

Frézard F, Martins PS, Bahia AP, et al. Enhanced oral delivery of antimony from meglumine antimoniate/beta-cyclodextrin nanoassemblies. Int J Pharm. 2008;347(1-2):102-108.

Kayser O, Olbrich C, Yardley V, Kiderlen AF, Croft SL. Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm. 2003;254(1):73-75.

Das S, Roy P, Mondal S, Bera T, Mukherjee A. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf B Biointerfaces. 2013;107:27-34.

Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34(7):945-953.

Garnier T, Croft SL. Topical treatment for cutaneous leishmaniasis. Curr Opin Investig Drugs. 2002;3(4):538-544.

Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3-19.

Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67(11):2576-2597.

Ménez C, Legrand P, Rosilio V, Lesieur S, Barratt G. Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B. Mol Pharm. 2007;4(2):281-288.

Kansal S, Tandon R, Dwivedi P, et al. Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: a system for intervention in visceral leishmaniasis. J Antimicrob Chemother. 2012;67(11):2650-2660.

Veerareddy PR, Vobalaboina V, Ali N. Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanospheres. J Drug Target. 2009;17(2):140-147.

Kedzierski L, Sakthianandeswaren A, Curtis JM, Andrews PC, Junk PC, Kedzierska K. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem. 2009;16(5):599-614.

Doroud D, Zahedifard F, Vatanara A, Najafabadi AR, Rafati S. Cysteine proteinase type I, encapsulated in solid lipid nanoparticles induces substantial protection against Leishmania major infection in C57BL/6 mice. Parasite Immunol. 2011;33(6):335-348.

Doroud D, Vatanara A, Zahedifard F, et al. Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations. J Pharm Pharm Sci. 2010;13(3):320-35.

Santos DM, Carneiro MW, de Moura TR, et al. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int J Nanomedicine. 2012;7:2115-2127.

Tafaghodi M, Eskandari M, Kharazizadeh M, Khamesipour A, Jaafari MR. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins. Trop Biomed. 2010;27(3):639-650.

Heravi Shargh V, Jaafari MR, Khamesipour A, et al. Cationic liposomes containing soluble Leishmania antigens (SLA) plus CpG ODNs induce protection against murine model of leishmaniasis. Parasitol Res. 2012;111(1):105-114.

Firouzmand H, Badiee A, Khamesipour A, et al. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA). Acta Trop. 2013;128(3):528-535.

Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818-5878.

Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem. 2007;53(11):2002-2009.

Li L, Li J, Jin H, et al. Detection of Leishmania donovani infection using magnetic beads-based serum peptide profiling by MALDI-TOF MS in mice model. Parasitol Res. 2012;110(3):1287-1290.

Zhang J, Song S, Zhang L, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc. 2006;128(26):8575-8580.

Mohan S, Srivastava P, Maheshwari SN, Sundar S, Prakash R. Nano-structured nickel oxide based DNA biosensor for detection of visceral leishmaniasis (Kala-azar). Analyst. 2011;136(13):2845-2851.

Choi J, Lim JH, Rho S, Jahng D, Lee J, Kim KJ. Nanoporous niobium oxide for label-free detection of DNA hybridization events. Talanta. 2008;74(4):1056-1059.

Yang Y, Wang Z, Yang M, et al. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes. Anal Chim Acta. 2007;584(2):268-274.

Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett. 2007;2(6):265-281.

Ballou B, Ernst LA, Andreko S, et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem. 2007;18(2):389-396.

Wang L, Wang K, Santra S, et al. Watching silica nanoparticles glow in the biological world. Analytical Chemistry. 2006;78(3):646-654.

Yan J, Estévez MC, Smith JE, et al. Dye-doped nanoparticles for bioanalysis. Nano Today. 2007;2(3):44-50.

Published

2014-09-20

How to Cite

1.
Remígio Henriques C, Ruiz M, Arias J. Nanotechnology and the diagnosis/treatment of leishmaniasis. Ars Pharm [Internet]. 2014 Sep. 20 [cited 2024 Jul. 22];55(3):1-10. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/4495

Issue

Section

Review Articles