Use of two supports for inmobilizing papain

Authors

  • EAR BIASUTTI Depto. de Alimentos/Fac. de Farmácia/UFMG- sala 3070-B3, Av. Antônio Carlos 6627- cep. 31270-901 – Belo Horizonte, MG, Brasil
  • LM DE MARCO Depto. de Alimentos/Fac. de Farmácia/UFMG- sala 3070-B3, Av. Antônio Carlos 6627- cep. 31270-901 – Belo Horizonte, MG, Brasil
  • WO AFONSO Depto. de Alimentos/Fac. de Farmácia/UFMG- sala 3070-B3, Av. Antônio Carlos 6627- cep. 31270-901 – Belo Horizonte, MG, Brasil
  • VDM SILVA Depto. de Alimentos/Fac. de Farmácia/UFMG- sala 3070-B3, Av. Antônio Carlos 6627- cep. 31270-901 – Belo Horizonte, MG, Brasil
  • DCF LOPES Depto. de Alimentos/Fac. de Farmácia/UFMG- sala 3070-B3, Av. Antônio Carlos 6627- cep. 31270-901 – Belo Horizonte, MG, Brasil
  • MPC SILVESTRE Depto. de Alimentos/Fac. de Farmácia/UFMG- sala 3070-B3, Av. Antônio Carlos 6627- cep. 31270-901 – Belo Horizonte, MG, Brasil

Keywords:

Activated carbon, Alumina, Contact time, Operational stability, Papain immobilization, Temperature

Abstract

Papain was immobilized on activated carbon (AC) and on alumina (AL), with the aim of preparing low cost dietarysupplements, using whey as hydrolysed protein source. The quantifi cation of the non-adsorbed enzyme, using Lowry’smethod was used to determine the immobilization rate. The effect of the contact time and the temperature was tested,and 30 min at 250C was considered the best condition for immobilizing papain in both supports. AC showed muchhigher immobilization rates (from 95% to 99%) than AL (from 4% to 13%). The reusability of papain was evaluated bymeasuring the residual activity of the enzyme after it has been used for up to 20 times. The quantifi cation of exposurerate of phenylalanine by second derivative spectrophotometry was used to determine the enzyme activity. In this case, ALshowed better results than AC, since the activity of papain remained unchanged after 15 and 5 times, respectively.

Downloads

Download data is not yet available.

References

Afaq S, Iqbal J. Immobilization and stabilization of papain on chelating sepharose: a metal chelate regenerable carrier. EJB 2001; 4: 120-124.

Zhuang P, Butterfield DA. Structural and enzymatic characterizations of papain immobilized onto vinyl alcohol/ vinyl

butyral copolymer membrane. J. Memb. Sci. 1992; 66: 247-257.

Dinella C, Stagni A, Lanzarini G. Pectolytic enzymes co-immobilization on ?-alumina spheres via organophosphates

compounds. Process Biochem. 1997; 32: 715-722.

Rani AS, Das MLD, Satyanarayana S. Preparation and characterization of amyloglucosidase adsorbed on activated

charcoal. J. Mol. Catal. B 2000; 10: 471-476.

Furegon L, Peruffo ADB, Curioni A. Immobilization of rice limit dextrinase on ?- alumina beads and its possible use

in starch processing. Process Biochem. 1996; 32: 113-120.

Moreno JM, Sinisterra JV. Immobilization of lipase from Candida cylindracea on inorganic supports. J. Mol. Catal.

; 93: 357-369.

Kilinç A, Önal S, Telefoncu A. Stabilization of papain by modification with chitosan. Turk. J. Chem. 2002; 26: 311-

Ladero M, Santos A, García-Ochoa F. Kinetic modeling of lactose hydrolysis with an immobilized ?-galactosidase from

Kluyveromyces fragilis. Enz. Microb. Technol. 2000; 27: 583-592.

Al-Duri B, Yong YP. Lipase immobilisation: An equilibrium study of lipases immobilised on hydrophobic and hydrophilic/

hidrophobic supports. Biochem. Eng. J. 2000; 4: 207-215.

Durán N, Rosa MA, D’annibale A, Gianfreda L. Applications of laccases and tyrosinases (phenoloxidases) immobilized

on different supports: a review. Enz. Micro. Technol. 2002; 31: 907-931.

Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated

phenomenon. J. Biosc. Bioeng. 2001; 91: 233-244.

Serralha FN, Lopes JM, Lemos F, Prazeres DMF, Aires-Barros MR, Cabral JMS, Ramôs-Ribeiro F. Zeolites as supports

for an enzymatic alcoholysis reaction. J. Mol. Catal. B. 1998; 4: 303-311.

Tu W, Sun S, Nu S, Li X. Immobilization of ?-galactosidase from Cicer arietinum (gram chocken bean) and its catalytic

actions. Food Chem. 1999; 64: 495-500.

Hosseinkhani S, Nemat-Gorgani M. Partial unfolding of carbonic anhydrase provides a method for its immobilization

on hydrophobic adsorbents and protects it against irreversible thermoinactivation. Enz. Microb. Technol. 2003; 33: 179-184.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Bio. Chemi. 1951; 193: 265-275.

Costa SA, Tzanov T, Paar A, Gudelj M, Gübitz GM, Cavaco-Paulo A. Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching afflents. Enz. Microb. Technol. 2001; 28: 815-819.

Tzanov T, Costa SA, Gübitz GM, Cavaco-Paulo A. Hydrogen peroxide generation with immobilized glucose oxidase

for textile bleaching. J.Biotechn. 2002; 93: 87-94.

Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 1976; 72: 248-254.

Beyon R, Bond JS. Proteolytic enzymes: a practical approach. The practical approach series. Oxford: Oxford University Press; 2001

Li YF, Jia FY, Li JR, Liu G, Li YZ. Papain immobilization on a fibre carrier containing primary amine groups. Biotechnol. Assl. Biochem. 2001; 33: 29-34.

Barbosa CMS, Morais HA, Delvivo FM, Mansur HS, Oliveira MC, Silvestre MPC. Papain hydrolysates of casein: molecular weight profile and encapsulation in lipospheres. J. Sci. Food Agric. 2004; 84: 1891-1900.

Lopes DCF, Delvivo FM, Silvestre MPC. Hydrolysates of skim milk powder: peptide profiles for dietetic purposes. Brit. Food J. 2005; 107: 42-53.

Lin H, Wang H, Xue C, Ye M. Preparation of chitosan oligomers by immobilized papain. Enz. Microb. Technol. 2002; 31: 588-592.

Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 1972; 45: 422 – 427.

Morais HA, Silva VDM, Oliveira MC, Silvestre MPC. Characterization of free aromatic amino acids and estimation of exposition rate of Phe in casein hydrolysates by second derivative. Acta Cient. Venez. 2004; 55:1-6.

Lopes DCF, Delvivo FM, Silvestre MPC. Use of activated carbon for removing phenylalanine from skim milk powder. Food Sci. Technol. 2005; 38: 447-453.

Pimentel-Gomes F. Curso de estatística experimental. Piracicaba: Nobel; 2000.

Giles CH. Adsorption. In: Heftman E. Chromatography. New York: Reinhold; 1961.

Whithaker JR. Effect of substrate concentration on rates of enzyme catalyzed reaction. In: Principles of enzymology for the food science. California, Marcel Dekker; 1994.

Huckel M, Wirth H-J, Hearn MTH. Porous zirconia: a new support material for enzyme immobilization. J. Biochem. Biophys. Methods 1996; 31: 165-179.

Ichikawa T, Terada H. Second derivative spectrophotometry as an effective tool for examining phenylalanine residues

in proteins. Biochim. Biophys. Acta 1977; 494: 267-270.

Barbosa CMS, Morais HA, Silva VDM, Oliveira MC, Silvestre MPC. Padronização de método analítico para avaliação do grau de exposição da fenilalanina em hidrolisados de caseína, por espectrofotometria derivada segunda. Rev. Bras. Ciên. Farmac. 2002; 38: 113-119.

Soares DLR, Biasutti EAR, Capobiango M, Vieira CR, Silva VDM, Januário JN, Aguiar MJB, Silvestre MPC. Preparation of enzymatic skim milk hydrolysates with low phenylalanine content. Acta Famac.Bon. 2006 (in press).

Miclo L, Perrin E, Driou A, Mellet M, Linden G,. Determination of the ratios of the aromatic amino acids residues by first- or second-derivative UV spectrometry for a simple characterization of peptides. Int. J. Pep. Prot. Res. 1995; 46: 186-192.

Levillain P, Fompeydie D. Spectrophotométrie dérivée: intérêt, limites et apllications. Analysis 1986; 14: 1-20.

Zhao Q, Sannier F, Garreau I, Lecoeur C, Piot JM. Reversed-phase high-performance liquid chromatography coupled with second-order derivative spectroscopy for the quantitation of aromatic amino acids in peptides: application to hemorphins. J. Chromatog. A 1996; 723: 35-41.

Bhardwaj A, Lee J, Glauner K, Ganapathi S, Bhattacharyya D, Butterfield DL. Biofunctional membranes: an EPR study of active site structure and stability of papain non-covalently immobilized on the surface of modified poly(ether)sulfone membranes through the avidin-biotin linkage. J. Memb. Sci. 1996; 119: 241-252.

Butterfield DL, Lee J, Ganapathi S, Bhattacharyya D. Biofunctional membranes Part IV. Active-site structure and stability of an immobilized enzyme, papain, on modified polysulfone membranes studied by electron paramagnetic resonance and kinetic. J. Memb. Sci. 1994; 91: 47-64.

Published

2006-12-20

How to Cite

1.
BIASUTTI E, DE MARCO L, AFONSO W, SILVA V, LOPES D, SILVESTRE M. Use of two supports for inmobilizing papain. Ars Pharm [Internet]. 2006 Dec. 20 [cited 2024 May 18];47(4):425-3. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/5043

Issue

Section

Original Articles