Marine Actinomycete Streptomyces rubrogriseus Derived Bioactives are Effective Against Clinical Strains of MRSA

Authors

  • Ambily Balakrishnan Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies
  • Nevin Kottayath Govindan Kerala University of Fisheries and Ocean Studies https://orcid.org/0000-0002-0844-9342
  • V P Limna Mol Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies
  • Hariharan Sini Department of Biochemistry, Government College Kariavattom https://orcid.org/0000-0002-0844-9342

DOI:

https://doi.org/10.30827/ars.v65i4.31089

Keywords:

Staphylococcus aureus, Streptomyces rubrogriseus, MRSA, Marine Actinomycetes, Bioactive compounds

Abstract

Introduction: Natural microbial communities interact to develop mutualistic relationships creating a competitive environment stimulating secondary metabolite production which may be developed as a potential drug against drug-resistant bacteria. The current research delves into the possibility of co-culturing marine actinomycetes to elevate the production of novel bioactive compounds with enhanced antimicrobial activity against Methicillin-­resistant Staphylococcus aureus (MRSA).

Method:. Actinomyocyte was isolated from marine sediments, identified as Streptomyces rubrogresius was cocultured with S. aureus. The bioactive compounds were extracted and evaluated for activity against MRSA variants. The extracts exhibiting significant activity were further characterized using GC-MS.

Results: The study demonstrated a significant increase in the production of bioactive compounds in co-culture compared to the monoculture. When tested against MRSA strains, inhibition zones obtained from ethyl acetate extracts of co-culture (40mm) revealed substantial differences when compared with that of monocultures (MIC: 10 μg/mL). GC-MS analysis identified unique chemical compositions and potential synergistic outcomes in the coculture rather than monoculture.

Conclusions: The findings from this study are of paramount importance as they aid in the discovery of novel antibiotics effective against MRSA.

Downloads

Download data is not yet available.

References

Jagannathan S V, Manemann E M, Rowe S E, Callender, M. C., Soto, W. Marine actinomycetes, new sources of biotechnological products. Marine Drugs. 2021; 19(7): 365. doi: 10.3390/md19070365. DOI: https://doi.org/10.3390/md19070365

Mast Y, Stegmann E. Actinomycetes: The antibiotics producers. Antibiotics. 2019; 8(3): 105. doi: 10.3390/antibiotics8030105. DOI: https://doi.org/10.3390/antibiotics8030105

Keikha, N, Mousavi S A, Bonjar G S, Fouladi B, Izadi A R. In vitro antifungal activities of Actinomyces species isolated from soil samples against Trichophyton mentagrophytes. Cur Med Mycol. 2015; 1(3): 33-38. doi: 10.18869/acadpub.cmm.1.3.33. DOI: https://doi.org/10.18869/acadpub.cmm.1.3.33

Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive metabolites from terrestrial and marine actinomycetes. Molecules, 2023; 28(15): 5915. doi: 10.3390/molecules28155915. DOI: https://doi.org/10.3390/molecules28155915

Lee N, Kim W, Hwang S, Lee Y, Cho S, Palsson B, Cho B.K. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci Data. 2020; 7(1): 55. doi: 10.1038/s41597-020-0395-9. DOI: https://doi.org/10.1038/s41597-020-0395-9

Kim J H, Lee N, Hwang S, Kim W, Lee Y, Cho S, Cho B K. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Micro Biotech. 2021; 48(3-4):kuaa001. doi: 10.1093/jimb/kuaa001. DOI: https://doi.org/10.1093/jimb/kuaa001

Nguyen CT, Dhakal D, Pham V T T, Nguyen H T, Sohng J K. Recent advances in strategies for activation and discovery/characterization of cryptic biosynthetic gene clusters in Streptomyces. Microorganism. 2020; 8(4): 616. doi: 10.3390/microorganisms8040616. DOI: https://doi.org/10.3390/microorganisms8040616

Liu Z, Zhao Y, Huang C, Luo Y. Recent advances in silent gene cluster activation in Streptomyces. Front Bioeng Biotech. 2021; 9: 632230. doi: 10.3389/fbioe.2021.632230. DOI: https://doi.org/10.3389/fbioe.2021.632230

Hoshino S, Onak, H. Abe I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J Indus Microbiol Biotech. 2019; 46(3-4): 363-374. doi: 10.1007/s10295-018-2100-y. DOI: https://doi.org/10.1007/s10295-018-2100-y

Alghamdi B A, Al-Johani I, Al-Shamrani J M, Alshamrani H M, Al-Otaibi B G., Almazmomi, K, Yusof NY. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J Biol Sci. 2023; 30(4): 103604. doi: 10.1016/j.sjbs.2023.103604. DOI: https://doi.org/10.1016/j.sjbs.2023.103604

Sanbrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory, 1989; 11: 31.

Yamanaka K, Oikawa H, Ogawa H O, Hosono K, Shinmachi F, Takano H, Ueda K. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology, 2005; 151(9): 2899-2905. doi: 10.1099/mic.0.28139-0. DOI: https://doi.org/10.1099/mic.0.28139-0

Onaka H, Mori Y, Igarashi Y, Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol. 2011; 77(2): 400-406. doi: 10.1128/AEM.01337-10. DOI: https://doi.org/10.1128/AEM.01337-10

Traxler M F, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio, 2013; 4(4): 1010-1128. doi: 10.1128/mBio.00459-13. DOI: https://doi.org/10.1128/mBio.00459-13

Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H. Discovery and total synthesis of streptoaminals: antimicrobial [5, 5]-spirohemiaminals from the combined-culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angewandte Chemie. 2016; 128(35): 10434-10438. DOI: https://doi.org/10.1002/ange.201604126

Pérez J, Muñoz-Dorado J, Braña A F, Shimkets L J, Sevillano L, Santamaría R I. Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor. ­Microbial Biotech. 2011; 4(2): 175-183. doi: 10.1111/j.1751-7915.2010.00208.x. DOI: https://doi.org/10.1111/j.1751-7915.2010.00208.x

Meschke H, Walter S, Schrempf H. Characterization and localization of prodiginines from Streptomyces lividans suppressing Verticillium dahliae in the absence or presence of Arabidopsis thaliana. Environ Microbiol. 2012; 14(4): 940-952. doi: 10.1111/j.1462-2920.2011.02665.x. DOI: https://doi.org/10.1111/j.1462-2920.2011.02665.x

Kurosawa K, Ghiviriga I, Sambandan T G, Lessard P A, Barbara J E, Rha C, Sinskey A J. Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc. 2008; 130(4): 1126-1127. doi: 10.1021/ja077821p. DOI: https://doi.org/10.1021/ja077821p

Adnani N, Chevrette M G, Adibhatla S N, Zhang F, Yu Q, Braun D R, Bugni T S. Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, keyicin. ACS Chem Biol. 2017; 12(12): 3093-3102. doi: 10.1021/acschembio.7b00688. DOI: https://doi.org/10.1021/acschembio.7b00688

Supardy N A, Ibrahim D, Sulaiman S F, Zakaria N A. Inhibition of Klebsiella pneumoniae ATCC 13883 cells by hexane extract of Halimeda discoidea (Decaisne) and the identification of its potential bioactive compounds. J Microbiol Biotech. 2012; 22(6): 872-881. doi: 10.4014/jmb.1111.11053. DOI: https://doi.org/10.4014/jmb.1111.11053

Pradhan S, Dubey R C. GC–MS analysis and molecular docking of bioactive compounds of Camellia sinensis and Camellia assamica. Arch Microbiol. 2021; 203(5): 2501-2510. doi: 10.1007/s00203-021-02209-6. DOI: https://doi.org/10.1007/s00203-021-02209-6

Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E, Praseetha PK. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Indus Crops Prod. 2020; 154: 112748. DOI: https://doi.org/10.1016/j.indcrop.2020.112748

Matin P, Hanee U, Alam M S, Jeong JE, Matin M M, Rahman M R, Kim B. Novel galactopyranoside esters: Synthesis, mechanism, in vitro antimicrobial evaluation and molecular docking studies. Molecules 2022; 27(13): 4125. doi: 10.3390/molecules27134125. DOI: https://doi.org/10.3390/molecules27134125

Seenivasa A, Manikkam R, Kaari M, Sahu AK, Said M, Dastager S G 2, 4-Di-tert-butylphenol (2, 4-DTBP) purified from Streptomyces sp. KCA1 from Phyllanthus niruri: Isolation, characterization, antibacterial and anticancer properties. J King Saud Uni Sci. 2022; 34(5): 102088. DOI: https://doi.org/10.1016/j.jksus.2022.102088

Choi D Y, Choi H. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer’s disease, Parkinson’s disease and ischemic brain stroke: Their molecular targets and action mechanisms. Arch Pharm Res. 2015; 38: 139-170. doi: 10.1007/s12272-014-0503-5. DOI: https://doi.org/10.1007/s12272-014-0503-5

Roy R N, Laskar S, Sen S K. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol Res. 2006; 161(2): 121-126. doi: 10.1016/j.micres.2005.06.007. DOI: https://doi.org/10.1016/j.micres.2005.06.007

Downloads

Published

2024-09-20

How to Cite

1.
Balakrishnan A, Kottayath Govindan N, Limna Mol VP, Sini H. Marine Actinomycete Streptomyces rubrogriseus Derived Bioactives are Effective Against Clinical Strains of MRSA. Ars Pharm [Internet]. 2024 Sep. 20 [cited 2025 Mar. 7];65(4):283-94. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/31089

Issue

Section

Original Articles