Differentially expressed genes in small cell lung cancer: Potential therapeutic targets

Authors

DOI:

https://doi.org/10.30827/ars.v65i3.30072

Keywords:

Small Cell Lung Carcinoma, Gene Expression Profiling, Therapeutic target

Abstract

Introduction: Small cell lung cancer (SCLC) is characterized by a discouraging life expectancy and limited treatment options, so the urgency to find new therapeutic targets is considerable. In this context, the use of differential gene expression analyses in SCLC tumor cells has made it possible to identify abnormally expressed genes associated with the development and progression of the disease, which may contribute to the discovery of potential therapeutic targets.

Method: A literature review was carried out in the databases PubMed, Science Direct, Google Scholar and Wiley, after which 28 references were included.

Results: Literature analysis revealed 37 differentially expressed genes in SCLC, involved in critical biological functions such as cell cycle regulation, signaling, transcription and embryonic development. Abnormal expression of these genes is associated with serious clinical consequences, such as poor prognosis, cancer progression, and drug resistance, highlighting the potential of these genes as potential therapeutic targets.

Conclusion: Detailed understanding of differential gene expression in SCLC opens promising ways for development of targeted therapies and the identification of these abnormally expressed genes as potential therapeutic targets represents a promising approach in the fight against this lethal form of lung cancer. 

Downloads

Download data is not yet available.

References

Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424. Doi:10.3322/caac.21492 DOI: https://doi.org/10.3322/caac.21492

Bernabé-Caro R, Chen Y, Dowlati A, & Eason P. Current and Emerging Treatment Options for Patients With Relapsed Small-cell Lung Carcinoma: A Systematic Literature Review. Clin lung cancer. 2023; 24(3), 185–208. Doi: 10.1016/j.cllc.2023.01.012 DOI: https://doi.org/10.1016/j.cllc.2023.01.012

Stewart C, Gay C, Xi Y, Sivajothi S, Sivakamasundari V, Fujimoto J, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nature cancer. (2020); 1, 423–436. Doi:10.1038/s43018-019-0020-z DOI: https://doi.org/10.1038/s43018-019-0020-z

McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017; 168(4):613-628. Doi:10.1016/j.cell.2017.01.018 DOI: https://doi.org/10.1016/j.cell.2017.01.018

Shlyakhtina Y, Moran K, & Portal M. Genetic and Non-Genetic Mechanisms Underlying Cancer Evolution. Cancers. 2021; 13(6), 1380. Doi:10.3390/cancers13061380 DOI: https://doi.org/10.3390/cancers13061380

Luo H, Shan J, Zhang H, Song G, Li Q, & Xu C. Targeting the epigenetic processes to enhance antitumor immunity in small cell lung cancer. Semin cancer biol, (2022); 86(3): 960–970. Doi:10.1016/j.semcancer.2022.02.018 DOI: https://doi.org/10.1016/j.semcancer.2022.02.018

Xue J, Liu Y, Wan L, Zhu Y. Comprehensive Analysis of Differential Gene Expression to Identify Common Gene Signatures in Multiple Cancers. Med Sci Monit. 2020; 26:e919953. Doi:10.12659/MSM.919953. DOI: https://doi.org/10.12659/MSM.919953

Krzyszczyk P, Acevedo A, Davidoff E, Timmins L, Marrero-Berrios I, Patel M, White C, Lowe C, Sherba J, Hartmanshenn C, et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 2019; 6:79–100. Doi:10.1142/S2339547818300020 DOI: https://doi.org/10.1142/S2339547818300020

Mao Y, Xue P, Li L, Xu P, Cai Y, Chu X, Jiang P, & Zhu S. Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA‑gene pairs in small‑cell lung cancer. Mol med rep. 2019; 20(3), 2199–2208. Doi:10.3892/mmr.2019.10441 DOI: https://doi.org/10.3892/mmr.2019.10441

Ni Z, Wang X, Zhang T, Li L, & Li J. Comprehensive analysis of differential expression profiles reveals potential biomarkers associated with the cell cycle and regulated by p53 in human small cell lung cancer. Exp ther med. 2018; 15(4), 3273–3282. Doi:10.3892/etm.2018.5833 DOI: https://doi.org/10.3892/etm.2018.5833

Shia D, Choi W, Vijayaraj P, Vuong V, Sandlin J, Lu M, et al. Targeting PEA3 transcription factors to mitigate small cell lung cancer progression. Oncogene. 2023; 42(6), 434–448. Doi:10.1038/s41388-022-02558-6 DOI: https://doi.org/10.1038/s41388-022-02558-6

Deng F, Tao F, Xu Z, Zhou J, Gong X, Zhang R. Construction of Prognostic Risk Model for Small Cell Lung Cancer Based on Immune-Related Genes. Comp math methods med. 2022; 2022, 7116080. Doi:10.1155/2022/7116080 DOI: https://doi.org/10.1155/2022/7116080

Kaemmerer D, Reimann C, Specht E, Wirtz RM, Sayeg M, Baum RP, Schulz S, Lupp A. Differential expression and prognostic value of the chemokine receptor CXCR4 in bronchopulmonary neuroendocrine neoplasms. Oncotarget. 2015; 6(5), 3346–3358. Doi:10.18632/oncotarget.3242 DOI: https://doi.org/10.18632/oncotarget.3242

Tang Y, Li G, Li D, Tang D, Huang J, Feng H, et al. The clinical significance of integrin subunit alpha V in cancers: from small cell lung carcinoma to pan-cancer. BMC pulm med. 2022; 22(1), 300. Doi:10.1186/s12890-022-02095-8 DOI: https://doi.org/10.1186/s12890-022-02095-8

Li G, Chen G, Liu J, Tang D, Zheng J, Luo J, et al. Clinical significance of cyclin-dependent kinase inhibitor 2C expression in cancers: from small cell lung carcinoma to pan-cancers. BMC pulm med. 2022; 22(1), 246. Doi:10.1186/s12890-022-02036-5 DOI: https://doi.org/10.1186/s12890-022-02036-5

Kerkentzes K, Lagani V, Tsamardinos I, Vyberg M, Røe OD. Hidden treasures in “ancient” microarrays: gene-expression portrays biology and potential resistance pathways of major lung cancer subtypes and normal tissue. Front oncol. 2014; 4, 251. Doi:10.3389/fonc.2014.00251 DOI: https://doi.org/10.3389/fonc.2014.00251

Yang L, Hu H, Deng Y, Bai Y. Zhongguo fei ai za zhi = Chin J lung cancer. 2014; 17(11), 769–777. Doi:10.3779/j.issn.1009-3419.2014.11.01

Westerman B, Breuer R, Poutsma A, Chhatta A, Noorduyn L, Koolen M, et al. Basic helix-loop-helix transcription factor profiling of lung tumors shows aberrant expression of the proneural gene atonal homolog 1 (ATOH1, HATH1, MATH1) in neuroendocrine tumors. Int J Biol Markers. 2007; 22(2), 114–123. Doi:10.1177/172460080702200205 DOI: https://doi.org/10.5301/JBM.2008.4847

Lang C, Lantos A, Megyesfalvi Z, Egger F, Hoda M, Mosleh B, et al. Clinical and prognostic implications of CD47 and PD-L1 expression in surgically resected small-cell lung cancer. ESMO open. 2022; 7(6), 100631. Doi:10.1016/j.esmoop.2022.100631 DOI: https://doi.org/10.1016/j.esmoop.2022.100631

Tenjin Y, Matsuura K, Kudoh S et al. Distinct transcriptional programs of SOX2 in different types of small cell lung cancers. Lab Invest. 2020; 100, 1575–1588. Doi:10.1038/s41374-020-00479-0 DOI: https://doi.org/10.1038/s41374-020-00479-0

Cui F, Hao Z, Li J, Zhang Y, Li X, He J. SOX2 mediates cisplatin resistance in small-cell lung cancer with downregulated expression of hsa-miR-340-5p. Mol genet genomic med. 2020; 8(5), e1195. Doi:10.1002/mgg3.1195 DOI: https://doi.org/10.1002/mgg3.1195

Jotatsu T, Yagishita S, Tajima K, Takahashi F, Mogushi K, Hidayat M, et al. LSD1/KDM1 isoform LSD1+8a contributes to neural differentiation in small cell lung cancer. Biochem biophys rep. 2016; 9, 86–94. Doi:10.1016/j.bbrep.2016.11.015 DOI: https://doi.org/10.1016/j.bbrep.2016.11.015

Mohammad H, Smitheman K, Kamat C, Soong D, Federowicz K, Van Aller G, et al. A DNA Hypomethylation Signature Predicts Antitumor Activity of LSD1 Inhibitors in SCLC. Cancer cell. 2015; 28(1), 57–69. Doi:10.1016/j.ccell.2015.06.002 DOI: https://doi.org/10.1016/j.ccell.2015.06.002

Nguyen E, Taniguchi H, Chan J, Zhan Y, Chen X, Qiu J, et al. Targeting Lysine-Specific Demethylase 1 Rescues Major Histocompatibility Complex Class I Antigen Presentation and Overcomes Programmed Death-Ligand 1 Blockade Resistance in SCLC. J thorac oncol. 2022; 17(8), 1014–1031. Doi:/10.1016/j.jtho.2022.05.014 DOI: https://doi.org/10.1016/j.jtho.2022.05.014

Shen W, Luo P, Sun Y, Zhang W, Zhou N, Zhan H, et al. NRBF2 regulates the chemoresistance of small cell lung cancer by interacting with the P62 protein in the autophagy process. iScience. 2022; 25(6), 104471. Doi:10.1016/j.isci.2022.104471 DOI: https://doi.org/10.1016/j.isci.2022.104471

Schultheis A, Bos M, Schmitz K, Wilsberg L, Binot E, Wolf J, et al. Fibroblast growth factor receptor 1 (FGFR1) amplification is a potential therapeutic target in small-cell lung cancer. Mod pathol. 2014; 27(2), 214–221. Doi:10.1038/modpathol.2013.141 DOI: https://doi.org/10.1038/modpathol.2013.141

Zhang J, Zhang H, Zhang L, Li D, Qi M, Zhang L, et al. Single-Cell Transcriptome Identifies Drug-Resistance Signature and Immunosuppressive Microenvironment in Metastatic Small Cell Lung Cancer. Adv gen. 2022; 3(2), 2270021. Doi:10.1002/ggn2.202270021 DOI: https://doi.org/10.1002/ggn2.202100060

He T, Wildey G, McColl K, Savadelis A, Spainhower K, McColl C, et al. Identification of RUNX1T1 as a potential epigenetic modifier in small-cell lung cancer. Mol oncol. 2021; 15(1), 195–209. Doi:10.1002/1878-0261.12829 DOI: https://doi.org/10.1002/1878-0261.12829

Yan W, Chung C, Xie T, Ozeck M, Nichols T, Frey J, et al. Intrinsic and acquired drug resistance to LSD1 inhibitors in small cell lung cancer occurs through a TEAD4-driven transcriptional state. Mol oncol. 2022; 16(6), 1309–1328. Doi:10.1002/1878-0261.13124 DOI: https://doi.org/10.1002/1878-0261.13124

Wang H, Wu S, Li Z, Zhang C, Shang X, Zhao C, et al. Molecular subtyping of small-cell lung cancer based on mutational signatures with different genomic features and therapeutic strategies. Cancer sci. 2023; 114(2), 665–679. Doi10.1111/cas.15606 DOI: https://doi.org/10.1111/cas.15606

Hu C, Dong J, Liu L, Liu J, Sun X, Teng F, et al. ASCL1 and DLL3 expressions and their clinicopathological implications in surgically resected pure small cell lung cancer: A study of 247 cases from the National Cancer Center of China. Thorac cancer. 2022; 13(3), 338–345. Doi:10.1111/1759-7714.14249 DOI: https://doi.org/10.1111/1759-7714.14249

Shukla V, Rao M, Zhang H, Beers J, Wangsa D, Buishand F, et al. ASXL3 is a novel pluripotency factor in human respiratory epithelial cells and a potential therapeutic target in small cell lung cancer. Cancer res. 2017; 77(22), 6267–6281. Doi:10.1158/0008-5472.CAN-17-0570 DOI: https://doi.org/10.1158/0008-5472.CAN-17-0570

Quintanal-Villalonga A, Taniguchi H, Hao Y, Chow A, Zhan Y, Chavan S, Uddin F, et al. Inhibition of XPO1 sensitizes small cell lung cancer to first- and second-line chemotherapy. Cancer res. 2022; 82(3), 472–483. Doi:10.1158/0008-5472.CAN-21-2964 DOI: https://doi.org/10.1158/0008-5472.CAN-21-2964

Quintanal-Villalonga A, Durani V, Sabet A, Redin E, Kawasaki K, Shafer M, et al. Exportin 1 inhibition prevents neuroendocrine transformation through SOX2 down-regulation in lung and prostate cancers. Sci transl med. 2023; 15(707), eadf7006. Doi:10.1126/scitranslmed.adf7006 DOI: https://doi.org/10.1126/scitranslmed.adf7006

Peng J, Wang Q, Liu H, Ye M, Wu X, Guo L. EPHA3 regulates the multidrug resistance of small cell lung cancer via the PI3K/BMX/STAT3 signaling pathway. Tumour biol. 2016; 37(9), 11959–11971. Doi:10.1007/s13277-016-5048-4 DOI: https://doi.org/10.1007/s13277-016-5048-4

Kim K, Kim Y, Rivard C, Kim D, Park K. FGFR1 is critical for RBL2 loss-driven tumor development and requires PLCG1 activation for continued growth of small cell lung cancer. Cancer res. 2020; 80(22), 5051–5062. Doi:10.1158/0008-5472.CAN-20-1453 DOI: https://doi.org/10.1158/0008-5472.CAN-20-1453

Taniwaki M, Daigo Y, Ishikawa N, Takano A, Tsunoda T, Yasui W, et al. Gene expression profiles of small-cell lung cancers: molecular signatures of lung cancer. Int. J. Oncol. 2006; 29(3), 567–575. https://doi.org/10.3892/ijo.29.3.567 DOI: https://doi.org/10.3892/ijo.29.3.567

Rudin C, Poirier J, Byers L, Dive C, Dowlati A, George J, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nature reviews. Cancer 2019; 19(5), 289–297. Doi:10.1038/s41568-019-0133-9 DOI: https://doi.org/10.1038/s41568-019-0133-9

Published

2024-06-20

How to Cite

1.
Jiménez Sánchez LE. Differentially expressed genes in small cell lung cancer: Potential therapeutic targets. Ars Pharm [Internet]. 2024 Jun. 20 [cited 2024 Jun. 30];65(3):278-87. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/30072

Issue

Section

Review Articles