Las proteínas y péptidos en la orientación de fármacos y su abordaje terapéutico

  • Raj K. Keservani School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal
  • Anil K. Sharma Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi
  • Urmila Jarouliya School of Studies in Biotechnology, Jiwaji University, Gwalior (M.P)
Palabras clave: proteína, péptido, liberación controlada, polímero bioerosionable


Objetivo. El objetivo principal de este artículo de revisión es proporcionar información sobre las ventajas de las proteínas y péptidos a través de diferentes vías de administración de fármacos, dirigidos a un sitio en particular y su implicación en el sistema de administración de fármacos.

Métodos. Con ese objetivo, los sitios web de PubMed, HCAplus, Thomson, se utilizaron como las principales fuentes para realizar la búsqueda de los artículos de investigación más importantes publicados sobre el tema. La información fue luego cuidadosamente analizada, destacando los resultados más importantes en el desarrollo de proteína y péptido de direccionamiento de drogas, así como su actividad terapéutica.

Resultados. En los últimos años muchos investigadores utilizan las proteínas y los péptidos como un sitio diana de fármaco por un sistema de administración diferente. Las proteínas y los péptidos se utilizan como agentes terapéuticos específicos y eficaces, debido a la inestabilidad y los efectos secundarios de su uso es complicado. Las proteínas quinasas son reguladores importantes de la mayoría, si no todos, los procesos biológicos. La actividad anormal de proteínas y péptidos se ha implicado en muchas enfermedades humanas, tales como diabetes, cáncer y trastornos neurodegenerativos.

Conclusión. Finalmente concluyó que la proteína y el péptido se utilizaron en fármaco que se dirige al sitio específico y también se utiliza en diferentes estados de enfermedad como el cáncer, la diabetes, como sustancias inmunomoduladora, efectos neurodegenerativos y actividad antimicrobiana.


Cleland J, et al.. In Formulation and Delivery of Proteins and Peptides; ACS Symposium Series; Amer. Chem. Societ. Washington, DC. 1994; 1: 1-2.

Luft FC, Lang GR, Aronoff H, Ruskoaho M, Toth M, Ganten D, Sterzel RB, Unger T. Atriopeptin III kinetics and pharmacodynamics in norma and anephric rats. J. Pharmacol. Exp. Ther. 1986; 236: 416-428.

Zhang F, Liu CL, Hu BR. Irreversible aggregation of protein synthesis machinery after focal brain ischemia. J. Neurochem. 2006; 98(1):102-112.

Witkop B. Nonenzymatic Methods For The Preferential and Selective Cleavage and Modification Of Proteins. Adv. Protein. Chem. 1961; 16: 221-321.

Marcritchie F. Adv. Proteins at interfaces. Protein. Chem. 1978; 32: 283-326.

Zhou XH, Li WP. Peptide and protein drugs. I Therapeutic applications, absorption and parenteral administration. Int. J. Pharm. 1991a; 75 (2-3): 97-115.

Zhou XH, Li WP. Peptide and protein drugs. I Therapeutic applications, absorption and parenteral administration. Int. J. Pharm. 1991a; 75: 117-130.

Sadee W. Protein drugs: A revolution in therapy. Pharm. Res. 1986; 3(1): 3-6.

Blume JP, Hunter T. Oncogenic kinase signalling. Nature. 2001; 411(6835): 355-365.

Cohen P. Protein kinases-the major drug targets of the twenty-firstcentury. Nat. Rev. Drug. Discov. 2002; 1(4): 309-15.

Saltiel AR, Pessin JE. Insulin signaling pathways in time andspace. Trends Cell. Biol. 2002; 12(2): 65-71.

Torchilin VP. Recent advances with liposomes as pharmaceuticalcarriers. Nat. Rev. Drug. Discov.2005; 4: 145–160.

Vyas SP, Khar KR. Targeted and controlled drug delivery, Novel carrier system, CBS publishers and distributors, New Delhi. 2002; 505-537.

Rapoport T. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature. 2007; 450 (7170): 663–669.

Martin RB. Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers. 1998; 45: 351–353.

Chein YW. Novel drug delivery systems, second edition, 1992; 50: 637-679.

Chien YW, Chang SF. Intranasal drug delivery for systemic medication. Crit. Rev. Ther. Drug. Carrier. Syst. 1987; 4: 67-194.

Banga AK, Chein YW. Systemic delivery of therapeutic peptides and proteins. Int. J. Pharm. 1988; 48: 15-50.

Wieriks J. Resorption of alpha amylase upon buccal application. Arch. Int. Pharmacodyn. Ther. 1964; 151: 126-135.

Tregear RT. The permeability of skin to albumin, dextrans and Polyvinylpyrrolidone. J. Invest. Dermatol. 1996; 46: 2427.

Menasche. Pharmacological studies on elastin peptides (kappa-elastin). Blood clearance, percutaneous penetration and tissue distribution. Pathol. Biol. 1981; 29: 548-554.

Brunette BR, Marreco D. Comparison between the iontophoretic and passive transport of thyrotropin releasing hormone across excised nude mouse skin. J Pharm. Sci. 1986; 75: 738-743.

Siddiqui O, Sun Y, Liu JC, Chein YW. Facilitated transdermal transport of insulin. J Pharm. Sci. 1987; 76: 341-345.

Wolf M, Ransberger K. Enzyme-therapy. Vantage Press. 1972.

Holcenberg JS, Roberts J. (ed.) Enzymes as Drugs, Wiley. 1981.

Torchilin VP. (ed.) Immobilized Enzymes in Medicine, Springer-Verlag. 1991.

Froidevaux S, Eberle A N. Somatostatin analogs andradiopeptides in cancer therapy. Biopolym. 2002; 66: 161–183.

Baselga J, Albanell J. Mechanism of action of anti-HER2monoclonal antibodies. Ann. Oncol. 2001; 12 (1): S35–S41.

Marshall H. Anti-CD20 antibody therapy is highly effective in thetreatment of follicular lymphoma.Trends Immun. 2001; 22 183–184.

Varga CM. Receptor-mediated targeting of gene deliveryvectors: insights from molecular mechanisms for improved vehicle design. Biotechnol. Bioeng. 2000; 70: 593–605.

Hanks SK, Hunter T. The eukaryotic proteinkinase superfamily: kinase (catalytic) domain structure and classification. Faseb J. 1995; 9(8): 576-96.

Pinna LA, Ruzzene, M. How do protein kinases recognize their substrates? Biochim. Biophys. Acta. 1996; 1314(3): 191-225.

Ron D, Mochly-Rosen D. An autoregulatory region in proteinkinase C: the pseudo anchoring site.Proc. Natl. Acad. Sci. USA1995; 92(2): 492-496.

Schechtman D, Mochly RD. Adaptor proteins in proteinkinase C-mediated signal transduction. Oncogene. 2001; 20(44): 6339-6347.

Niv MY, Rubin H, Cohen J, Tsirulnikov L, Licht T, Peretzman-Shemer A. Sequence-based design of kinase inhibitors applicablefor therapeutics and target identification. J Biol Chem. 2004; 279(2): 1242-55.

Mack E, Ziv E, Reuveni H, Kalman R, Niv MY, Jorns A. Prevention of insulin resistance and beta-cell loss by abrogatingPKCepsilon-induced serine phosphorylation of muscle IRS-1 in Psammomysobesus. Diabetes Metabol. Res. Rev. 2008; 24(7): 577-584.

Ron D, Luo J, Mochly-Rosen D. C2 region-derived peptides inhibit translocation and function of beta protein kinase C in vivo. J. Biol. Chem. 1995; 270(41), 24180-24187.

Loudon GM. Mechanistic interpretation of pH-rate profiles. J. Chem Ed. 1991; 68: 973-984.

Yoshioka S, Aso Y, Izutsu KI, Terao T. Application of accelerated testing to shelf-life prediction of commercial protein preparations. J. Pharm. Sci. 1994; 83 (3): 454-456.

Cleland JL, Powell MF, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Therap. Drug. Carr. Syst. 1993; 10: 307-377.

Pearlman R, Nguyen T. Pharmaceutics of protein drugs. J. Pharm. Pharmacol. Sppl. 1992; 44 (1): 178-185.

Gu KM, Erdo EΑ, Chiang H, Calderwood T, Tsai K, Visor GC, Duffy J, Hsu W, Foster LC. Stability of interleukin 1 beta (IL-1 beta) in aqueous solution: analytical methods, kinetics, products, and solution formulation implications. Pharm. Res. 1991; 8: 485-490.

Skottner Α, Forsman Α, Skoog B, Kostyo JL, Cameron CM, Adamfio NΑ, Thorngren KG, Hagerman M. Biological characterization of charge isomers of human growth hormone. Acta. Endocrinol. 1988; 118: 14-19.

Oliyai C, Schoneich C, Wilson GS, Borchardt RT. In: Topics in Pharmaceutical Sciences, Crommelin DJΑ, Miha KK, (Ed.) Med. Pharm. Scientific Publishers, Stuttgart. 1992; 23-46.

Hora MS, Rana RK, Wilcox CL, Katre NV, Hirtzer P, Wolfe SN., Thomson JW. Development of a lyophilized formulation of interlukin-2.Dev. Biol. Stand. 1991; 74: 295-307.

Wearley LL. Recent progress in protein and peptide delivery by noninvasive routes. Crit. Rev. Therap Drug Carrier Syst. 1991; 8: 331-394.

Oliyai R, Stella VJ. Prodrugs of peptides and protein for improved formulation and delivery. Annu. Rev. Pharmcol. Toxicol. 1993; 32: 521-544.

Miyamoto S, Takaoka K, Okada T, Yoshikawa H, Hashimoto J, Suzuki S, Ono K. Polylactide acid –polyethylene glycol block copolymer: a new biodegradable synthetic carrier for bone morphogenetic protein. Clin. Orthopaedics Related Res. 1993; 294: 333-343.

Gombotz WR, Pankey SC, Bouchard LS, Ranchalis J, Puolakkainen P. Controlled release of TGF-beta (1) from a biodegradable matrix for bone regeneration. J. Biomater. Sci. Polymer 1993; 5: 49-63.

Heya, T, Okada H, Ogawa Y, Toguchi H. Factors influencing the profiles of TRH release from copoly (d,l-lactic/glycolic acid) microspheres. Int. J. Pharm. 1991; 72: 199-205.

Mariette Β, Coudane J, Vert M, Gautier JC, Moneton P. Release of the GRF29NH2 analog of human GRF44NH2 from a PLA/GA matrix. J Contrl. Rel. 1993; 237-246.

Bodmer D, Kissel T, Traechslin E. Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems. J. Contrl. Rel. 1992; 21: 129-138.

Yamakawa I, Tsushima Y, Machida R, Watanabe S. Preparation of neurotensin analogue-containing poly(dl-lactic acid) microspheres formed by oil in water solvent evaporation. J. Pharm Sci. 1992; 81: 899-903.

Sanchez Α, Vila-Jato JL, Alonso MJ. Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporine A. Int. J. Pharm. 1993; 99(2-3): 263-273.

Reid RH, Boedeker EC, McQueen CE, Davis D, Tseng LY, Kodak J, Sau K. Preclinical evaluation of microencapsulated CFA/II oral vaccine against enterotoxi- genic E. coli. Vaccine 1993; 11(2): 159-167.

Almeidia AJ, Alpar HO, Williamson D, Brown MRW. Poly(lactic acid) microspheres as immunological adjuvants for orally delivered cholera toxin B subunit. 643rd Meeting of the Biochemical Society (Warwick, UK). Biochem. Soc.Trans. 1992; 20: 316S.

Singh M, Sing, O, Singh Α, Talwar GP. Immunogenicity studies on diphtheria toxoid loaded biodegradable microspheres. Int. J. Pharm. 1992; 85: R5-R8.

Jeffery H, Davis SS, O’Hagen DT. The preparation and characterization of poly(lactide-co-glycolide) microparticle. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharm. Res. 1993; 10: 362-368.

Alonso MJ, Cohen S, Park TG, Gupta RK, Siber GR, Langer R. Determinants of release rate of tetanus vaccine from polyester microspheres. Pharm. Res.1993; 10 (7): 945-953.

Stoeckemann K, Sandow J. J. Cancer Res. Clin. Oncology 1993; 119: 457-462.

Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Lange R. Controlled Delivery Systems for Proteins Based on Poly(Lactic/Glycolic Acid) Microspheres Pharm. Res. 1991; 8(6): 713-720.

Gopferich A, Langer R. The influence of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides. J. Polymer Sci. 1993; 31: 2445-2458.

Langer R, Folkman J. Polymer for the sustained release of proteins and other macromolecules. Nature, 1976; 263 (5580): 797-800.

Siegel R, Kost J, Langer R. Mechanistic studies of macromolecular drug release from macroporous polymers. I. Experiments and preliminary theory concerning completeness of drug release J. Contr. Rel., 1989; 8(3): 223-236.

Arakawa T, Kita Y, Carpenter F. Protein–Solvent Interactions in Pharmaceutical Formulations. Pharm. Res. 1991; 8: 285-291.

Edelman ER, Mathiowit E, Langer R, Klagsbrun M. Controlled and modulated release of basic fibroblast growth factor. Biomaterials. 1991; 7(12): 619-626.

Andrianov AK, Cohen S, Visscher KB, Payne LG, Allcock HR, Langer R. Controlled release using ionotropic polyphosphazene hydrogels J. Contr. Rel. 1993; 27 (1): 69-73.

Kohn J, Niemi SM, Albert EC, Murphy JC, Langer R, Fox J. Single step immunization using a controlled release, biodegradable polymer with sustained adjuvant activity. J. Immunol. Method. 1986; 95: 31-38.

Preis I, Langer R. A single-step immunization by sustained antigen release. J. Immunol. Method. 1979; 28: 193-197.

O’Hagan DT, Rahman D, McGee JP, Jeffery H, Davies MC, Williams P, Davis SS, Challacombe S. Biodegradable microparticles as controlled release antigen delivery systems. Immunology. J Immunology. 1991; 73: 239-242.

Singh M, Singh A, Talwar GP. Controlled Delivery of Diphtheria Toxoid Using Biodegradable Poly(D,L-Lactide) Microcapsules. Pharm. Res. 1991; 8: 958-961.

Eldridge JH, Staas JK, Meulbroek JA, Tice TR, Gille RM. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect. Immun. 1991; 59: 2978-2986.

Sluzky V, Klibano AM, Langer R. Mechanism of insulin aggregation and stabilization in agitated aqueous solutions. Biotech. Bioeng. 1992; 40: 895-903.

Chen HY, Mollstedt O, Tsai MH, Kreider RB. Potential clinical applications of multi-functional milk proteins and peptides in cancer management. Curr Med Chem. 2014; 21(21): 2424-2437.

Wangler C, Buchmann I, Eisenhut M, Haberkorn U, Mier W. Radiolabeled peptides and proteins in cancer therapy. Protein Pept Lett. 2007; 14(3): 273-239.

Rekha MR, Sharma Chandra P. Oral delivery of therapeutic protein/peptide for diabetes – Future perspectives. Intl. J Pharm. 2013; 440 (1): 48–62.

Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014; 7(5): 545-594.

Bartlomiej D, Marta D. New milk protein-derived peptides with potential antimicrobial activity: An approach based on bioinformatic studies. Int. J. Mol. Sci. 2014; 15: 14531-14545.

Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as immunomodulators. Immunotherapy. 2014; 6 (6): 755-774.

Sarah CM, Olga MP, Hancock REW. Host defense peptides: front-line immunomodulators. Trends in Immunology. 2014; 35 (9): 443-450.

Kishore U. Neurodegerative disease (ed.) In: Role of protein aggregation in neurodegenerative diseases. Tutar Y, Ozgur A, Tutar L. Chap. 2013; 3 (2013): 55-76.

Gene L, Bidwell III, George EM. Maternally sequestered therapeutic polypeptides – a new approach for the management of preeclampsia. Frontiers in Pharmacology. 2014; 5(201):1-9.

Zhang XX, Eden HS, Chen X. Peptides in cancer nanomedicine: Drug carriers, targeting ligands and protease substrates. J. Control. Release. 2012; 159: 2–13.

Regberg J, Srimanee A, Langel U. Applications of Cell-Penetrating Peptides for Tumor Targeting and Future Cancer Therapies. Pharmaceuticals. 2012; 5, 991-1007.

Harada, H, Kizaka-Kondoh S, Hiraoka M. Antitumor protein therapy; application of the protein transduction domain to the development of a protein drug for cancer treatment. Breast Cancer 2006; 13: 16–26.

Su X, Dong C, Zhang J, Su L, Wang X, et al.. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell & Bioscience 2014; 4: 7, 1-13.

Almansour NM, Pirogova E, Coloe PJ, et al.. A bioactive peptide analogue for myxoma virus protein with a targeted cytotoxicity for human skin cancer in vitro. Journal of Biomedical Science 2012; 19 (65): 1-13.

Kaspar Allan A. and Reichert, JM. Future directions for peptide therapeutics development. Drug Discovery Today, 2013; 1-11.

Andrea El-Ouaghlidi, and Michael A Nauck, Glucagon-like peptide 1: new. therapies for Type 2 diabetes. Diabetes voice, 2004; 49: 2, 24-26.

Wahren J, Kallas A, et al.. The clinical potential of C-peptide replacement in type-1 diabetes. 2012; 61: 1-12.

Luppi P, Cifarelli V, Wahren J. C-peptide and long-term complications of diabetes. Pediatr Diabetes 2011; 12: 276–292.

Carrillo-Sepulveda, MA, Matsumoto T, Nunes KP, and Webb RC. Therapeutic implications of peptide interactions with G-protein-coupled receptors in diabetic vasculopathy. Acta Physiol 2014; 211: 20–35.

Clare DA, Catignani GL, Swaisgood HE. Biodefense properties of milk: the role of antimicrobial proteins and peptides. Current Pharmaceutical Design 2003; 29: 1239-1255.

Moller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. European J. Nutr. 2008; 47, 171-182.

Krol J, Brodziak A, Litwińczuk Z, Szwajkowska M. Wykorzystanie białek serwatkowych w promocji zdrowia (Whey protein utilization in health promotion). In Polish, summary in English. Żywienie człowieka i metabolizm XXXVIII 2011; (1): 36-45.

Kamau SM, Cheison SC, Chen W, Liu XM, Lu RR. Alpha-Lactalbumin: its production technologies and bioactive peptides. Comprehensive Reviews in Food Science and Food Safety 2010; 9: 197-212.

Prioult G, Pecquet S, Fliss I. Stimulation of interleukin-10 production by acidic beta-lactoglobulin-derived peptides hydrolyzed with Lactobacillus paracasei NCC2461 peptidases. Clinical and Diagnostic Laboratory Immunology 2004; 11: 266-271.

Szwajkowska M, Wolanciuk A, Barłowska J, Król J, Zygmunt Litwińczuk. Bovine milk proteins as the source of bioactive peptides influencing the consumers’ immune system – a review. Animal Science Papers and Reports 2011; 29 (4): 269-280.

Rodrigo TS, Salvatore A. Immunomodulatory Effects by a Heat Shock Protein dnaJ Derived Peptide in Rheumatoid Arthritis. Specific Immunotherapy of Chronic Autoimmune Diseases. 1999; 63-71.

Buchau AS. Schauber J, Hultsch T, Stuetz A, Gallo RL. Pimecrolimus enhances TLR2/6- induced expression of antimicrobial peptides in keratinocytes. J. Invest. Dermatol. 2008; 128: 2646-2654.

Rosenberger CM, Gallo RL, Finlay BB. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl. Acad. Sci. USA 2004; 101: 2422-2427.

Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005; 6: 603–14.

Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease. Clin Sci (Lond). 2006; 110:167–73.

Chiba T, Yamada M, Sasabe J, Terashita K, Aiso S, et al.. Colivelin prolongs survival of an ALS model mouse. Biochem Biophys Res Commun. 2006; 343:793–798.

Vulih-Shultzman I, Pinhasov A, Mandel S, et al.. Activity dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J Pharmacol Exp Ther. 2007; 323:438–49.

Popiel HA, Burke J, Warren RJ, et al.. The Aggregation Inhibitor Peptide QBP1 as a Therapeutic Molecule for the Polyglutamine Neurodegenerative Diseases. Journal of Amino Acids, 2011.

Velden WJ, Van Iersel, TM, Blijlevens NM, Donnelly JP. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11).In BMC Med. 2009; 7: 44.

Bals R. Epithelial antimicrobial peptides in host defense against infection. Respirat. Research. 2000; 1 (3): 141-150.

Schuerholz T, Brandenburg K, Marx G. The anti-inflammatory effect of the synthetic antimicrobial peptide 19-2.5 in a murine sepsis model: a prospective randomized study. Critical Care 2012; 16: 207.

Bulet P, Hetru C, Dimarcq J. Hoffmann D. Antimicrobial peptides in insects; structure and function. Devel. Comparat. Immunol. 1999; 23(4-5): 329-344.

Li SS, Gullbo J, Lindholm P, Larsson R, et al.. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga. Biochem. J. 2002; 366 (2) :405-413.

Peravali JB, Kotra SR, Sobha K, et al.. Antimicrobial peptides: an effective alternative for antibiotic therapy. Mintage J. Pharm. Med. Sci. 2013; 2 (2): 1-7.

Oo TZ, Cole N, Garthwaite L, Mark D, Willcox P, Zhu H. Evaluation of synergistic activity of bovine lactoferricin with antibiotics in corneal infection. J. Antimicrob. Chemother. 2010; 65: 1243-1251.

van der Kraan MIA, Nazmi K, et al.. Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal partThe J. Biol. Chem. 2005; 386: 137-142.

Pan Y, Rowney M, Guo P, Hobman P. Biological properties of lactoferrin: an overview. Austr. J. Dairy Techn. 2007; 62: 31- 42.

Rivas L, Luque-Ortega JR, Fernandez-Reyes M, Andreu D. Membrane-active peptides as anti-infectious agents. J. Appl. Biomed. 2010; 8: 159-167.

Cómo citar
Keservani RK, Sharma AK, Jarouliya U. Las proteínas y péptidos en la orientación de fármacos y su abordaje terapéutico. Ars Pharm [Internet]. 20 de septiembre de 2015 [citado 2 de diciembre de 2022];56(3):165-77. Disponible en:


La descarga de datos todavía no está disponible.