Los bioactivos derivados del actinomiceto marino Streptomyces rubrogriseus son eficaces contra las cepas clínicas de SAMR

Autores/as

  • Ambily Balakrishnan Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies
  • Nevin Kottayath Govindan Kerala University of Fisheries and Ocean Studies https://orcid.org/0000-0002-0844-9342
  • V P Limna Mol Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies
  • Hariharan Sini Department of Biochemistry, Government College Kariavattom https://orcid.org/0000-0002-0844-9342

DOI:

https://doi.org/10.30827/ars.v65i4.31089

Palabras clave:

Staphylococcus aureus, Streptomyces rubrogriseus, SARM, actinomicetos marinos, Compuestos bioactivos

Resumen

Introducción: Las comunidades microbianas naturales interactúan para desarrollar relaciones mutualistas creando un entorno competitivo que estimula la producción de metabolitos secundarios que pueden desarrollarse como un fármaco potencial contra bacterias resistentes a los medicamentos. La investigación actual profundiza en la posibilidad de cocultivar actinomicetos marinos para elevar la producción de nuevos compuestos bioactivos con actividad antimicrobiana mejorada contra Staphylococcus aureus resistente a la meticilina (SARM).

Método: Se aisló actinomicito de sedimentos marinos, identificado como Streptomyces rubrogresius, se cocultivó con S. aureus. Se extrajeron los compuestos bioactivos y se evaluó su actividad contra variantes de SARM. Los extractos que exhibieron actividad significativa se caracterizaron adicionalmente utilizando Cromatrogafía de gases/espectrometría de masas (GC-MS).

Resultados: El estudio demostró un aumento significativo en la producción de compuestos bioactivos en cocultivo en comparación con el monocultivo. Cuando se probaron contra cepas de SARM, las zonas de inhibición obtenidas a partir de extractos de cocultivo en acetato de etilo (40 mm) revelaron diferencias sustanciales en comparación con las de los monocultivos (CIM: 10 μg/mL). El análisis GC-MS identificó composiciones químicas únicas y posibles resultados sinérgicos en el cocultivo en lugar del monocultivo.

Conclusiones: Los hallazgos de este estudio son de suma importancia ya que ayudan en el descubrimiento de nuevos antibióticos eficaces contra SARM.

Descargas

Citas

Jagannathan S V, Manemann E M, Rowe S E, Callender, M. C., Soto, W. Marine actinomycetes, new sources of biotechnological products. Marine Drugs. 2021; 19(7): 365. doi: 10.3390/md19070365. DOI: https://doi.org/10.3390/md19070365

Mast Y, Stegmann E. Actinomycetes: The antibiotics producers. Antibiotics. 2019; 8(3): 105. doi: 10.3390/antibiotics8030105. DOI: https://doi.org/10.3390/antibiotics8030105

Keikha, N, Mousavi S A, Bonjar G S, Fouladi B, Izadi A R. In vitro antifungal activities of Actinomyces species isolated from soil samples against Trichophyton mentagrophytes. Cur Med Mycol. 2015; 1(3): 33-38. doi: 10.18869/acadpub.cmm.1.3.33. DOI: https://doi.org/10.18869/acadpub.cmm.1.3.33

Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive metabolites from terrestrial and marine actinomycetes. Molecules, 2023; 28(15): 5915. doi: 10.3390/molecules28155915. DOI: https://doi.org/10.3390/molecules28155915

Lee N, Kim W, Hwang S, Lee Y, Cho S, Palsson B, Cho B.K. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci Data. 2020; 7(1): 55. doi: 10.1038/s41597-020-0395-9. DOI: https://doi.org/10.1038/s41597-020-0395-9

Kim J H, Lee N, Hwang S, Kim W, Lee Y, Cho S, Cho B K. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Micro Biotech. 2021; 48(3-4):kuaa001. doi: 10.1093/jimb/kuaa001. DOI: https://doi.org/10.1093/jimb/kuaa001

Nguyen CT, Dhakal D, Pham V T T, Nguyen H T, Sohng J K. Recent advances in strategies for activation and discovery/characterization of cryptic biosynthetic gene clusters in Streptomyces. Microorganism. 2020; 8(4): 616. doi: 10.3390/microorganisms8040616. DOI: https://doi.org/10.3390/microorganisms8040616

Liu Z, Zhao Y, Huang C, Luo Y. Recent advances in silent gene cluster activation in Streptomyces. Front Bioeng Biotech. 2021; 9: 632230. doi: 10.3389/fbioe.2021.632230. DOI: https://doi.org/10.3389/fbioe.2021.632230

Hoshino S, Onak, H. Abe I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J Indus Microbiol Biotech. 2019; 46(3-4): 363-374. doi: 10.1007/s10295-018-2100-y. DOI: https://doi.org/10.1007/s10295-018-2100-y

Alghamdi B A, Al-Johani I, Al-Shamrani J M, Alshamrani H M, Al-Otaibi B G., Almazmomi, K, Yusof NY. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J Biol Sci. 2023; 30(4): 103604. doi: 10.1016/j.sjbs.2023.103604. DOI: https://doi.org/10.1016/j.sjbs.2023.103604

Sanbrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory, 1989; 11: 31.

Yamanaka K, Oikawa H, Ogawa H O, Hosono K, Shinmachi F, Takano H, Ueda K. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology, 2005; 151(9): 2899-2905. doi: 10.1099/mic.0.28139-0. DOI: https://doi.org/10.1099/mic.0.28139-0

Onaka H, Mori Y, Igarashi Y, Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol. 2011; 77(2): 400-406. doi: 10.1128/AEM.01337-10. DOI: https://doi.org/10.1128/AEM.01337-10

Traxler M F, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio, 2013; 4(4): 1010-1128. doi: 10.1128/mBio.00459-13. DOI: https://doi.org/10.1128/mBio.00459-13

Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H. Discovery and total synthesis of streptoaminals: antimicrobial [5, 5]-spirohemiaminals from the combined-culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angewandte Chemie. 2016; 128(35): 10434-10438. DOI: https://doi.org/10.1002/ange.201604126

Pérez J, Muñoz-Dorado J, Braña A F, Shimkets L J, Sevillano L, Santamaría R I. Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor. ­Microbial Biotech. 2011; 4(2): 175-183. doi: 10.1111/j.1751-7915.2010.00208.x. DOI: https://doi.org/10.1111/j.1751-7915.2010.00208.x

Meschke H, Walter S, Schrempf H. Characterization and localization of prodiginines from Streptomyces lividans suppressing Verticillium dahliae in the absence or presence of Arabidopsis thaliana. Environ Microbiol. 2012; 14(4): 940-952. doi: 10.1111/j.1462-2920.2011.02665.x. DOI: https://doi.org/10.1111/j.1462-2920.2011.02665.x

Kurosawa K, Ghiviriga I, Sambandan T G, Lessard P A, Barbara J E, Rha C, Sinskey A J. Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc. 2008; 130(4): 1126-1127. doi: 10.1021/ja077821p. DOI: https://doi.org/10.1021/ja077821p

Adnani N, Chevrette M G, Adibhatla S N, Zhang F, Yu Q, Braun D R, Bugni T S. Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, keyicin. ACS Chem Biol. 2017; 12(12): 3093-3102. doi: 10.1021/acschembio.7b00688. DOI: https://doi.org/10.1021/acschembio.7b00688

Supardy N A, Ibrahim D, Sulaiman S F, Zakaria N A. Inhibition of Klebsiella pneumoniae ATCC 13883 cells by hexane extract of Halimeda discoidea (Decaisne) and the identification of its potential bioactive compounds. J Microbiol Biotech. 2012; 22(6): 872-881. doi: 10.4014/jmb.1111.11053. DOI: https://doi.org/10.4014/jmb.1111.11053

Pradhan S, Dubey R C. GC–MS analysis and molecular docking of bioactive compounds of Camellia sinensis and Camellia assamica. Arch Microbiol. 2021; 203(5): 2501-2510. doi: 10.1007/s00203-021-02209-6. DOI: https://doi.org/10.1007/s00203-021-02209-6

Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E, Praseetha PK. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Indus Crops Prod. 2020; 154: 112748. DOI: https://doi.org/10.1016/j.indcrop.2020.112748

Matin P, Hanee U, Alam M S, Jeong JE, Matin M M, Rahman M R, Kim B. Novel galactopyranoside esters: Synthesis, mechanism, in vitro antimicrobial evaluation and molecular docking studies. Molecules 2022; 27(13): 4125. doi: 10.3390/molecules27134125. DOI: https://doi.org/10.3390/molecules27134125

Seenivasa A, Manikkam R, Kaari M, Sahu AK, Said M, Dastager S G 2, 4-Di-tert-butylphenol (2, 4-DTBP) purified from Streptomyces sp. KCA1 from Phyllanthus niruri: Isolation, characterization, antibacterial and anticancer properties. J King Saud Uni Sci. 2022; 34(5): 102088. DOI: https://doi.org/10.1016/j.jksus.2022.102088

Choi D Y, Choi H. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer’s disease, Parkinson’s disease and ischemic brain stroke: Their molecular targets and action mechanisms. Arch Pharm Res. 2015; 38: 139-170. doi: 10.1007/s12272-014-0503-5. DOI: https://doi.org/10.1007/s12272-014-0503-5

Roy R N, Laskar S, Sen S K. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol Res. 2006; 161(2): 121-126. doi: 10.1016/j.micres.2005.06.007. DOI: https://doi.org/10.1016/j.micres.2005.06.007

Publicado

20-09-2024

Cómo citar

1.
Balakrishnan A, Kottayath Govindan N, Limna Mol VP, Sini H. Los bioactivos derivados del actinomiceto marino Streptomyces rubrogriseus son eficaces contra las cepas clínicas de SAMR. Ars Pharm [Internet]. 20 de septiembre de 2024 [citado 14 de mayo de 2025];65(4):283-94. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/31089

Número

Sección

Artículos Originales