Administración transbucal del sulfato de salbutamol: Determinación in vitro de las rutas de transporte bucal

Autores/as

  • VB SUTARIYA Pharmacy Department. Center of relevance and excellence in NDDS. G.H. Patel building. The M.S. University of Baroda. Kalabhavan, Vadodara
  • RC MASHRU Pharmacy Department. Center of relevance and excellence in NDDS. G.H. Patel building. The M.S. University of Baroda. Kalabhavan, Vadodara
  • MG SANKALIA Pharmacy Department. Center of relevance and excellence in NDDS. G.H. Patel building. The M.S. University of Baroda. Kalabhavan, Vadodara
  • JM SANKALIA Pharmacy Department. Center of relevance and excellence in NDDS. G.H. Patel building. The M.S. University of Baroda. Kalabhavan, Vadodar

Palabras clave:

Permeabilidad, Membrana mucosa, Especies ionizadas, Especies no ionizadas

Resumen

Se estudió la influencia de la concentración de fármaco, el pH del compartimento dador y el coeficientede partición 1-octanol/tampón en la permeación transbucal del sulfato de salbutamol (pKa1 = 9,3; pKa2= 10,3) a través de mucosa bucal porcina utilizando una célula de difusión de Franz en línea a 37 ºC.El pH se ajustó a varios valores y la solubilidad del fármaco se midió en distintos pH. La solubilidaddel sulfato de salbutamol descendió al aumentar el pH. Se evaluó la permeabilidad del fármaco adiferentes concentraciones de fármaco y pH dador. Se calculó la permeabilidad de especies ionizadas (Pi)y no ionizadas (Pu) del fármaco. El flujo de estado estable aumentó de forma lineal con la concentracióndadora (r2=0,9683) con pH 7,4. El coeficiente de partición y permeabilidad aumentaron al aumentar elpH. Los valores de Pu y Pi del sulfato de salbutamol fueron 8,89 · 10-6 cm·s-1 y 2,49 · 10-6 cm·s-1,respectivamente. El coeficiente de permeabilidad total aumentó al aumentar la fracción de la forma noionizada del fármaco. El fármaco penetró a través de la mucosa bucal mediante un proceso de difusiónpasivo. El coeficiente de partición y la dependencia del pH de la permeabilidad del fármaco indicaronque el sulfato de salbutamol se transportó principalmente a través de la ruta paracelular mediante unmecanismo de partición.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Gandhi RB, Robinson JR. Oral cavity as a site for bioadhesive drug delivery. Adv Drug Deli Rev 1994; 13: 43-74.

Patterson KW, Keane PW. Use of the buccal route for the administration of an antiemetic. Pharm Res 1989; 6: 160-166.

Rathbone MJ, Hasgraft J. Absorption of drugs from the human oral cavity. Int J Pharm 1991; 71: 9-24.

Khanvilkar K, Donovan MD, Flanagan DR. Drug transfer through mucus. Adv Drug Del Rev 2001; 48: 173-193.

Senel S, Hincal AA. Drug permeation enhancement via buccal route: possibilities and limitations. J Contr Rel 2001; 72: 133-144.

Junginger HE, Hoogstraate JA, Verhoef JC. Recent advances in buccal drug delivery and absorption—in vitro and in vivo studies. J Contr Rel 1999; 62: 149-159.

Chen LL, Chetty DJ, Chien YW. A mechanistic analysis to characterize oramucosal permeation properties. Int J Pharm 1999; 184: 63-72.

Al-sayed-omar O, Johnson A, Turner P. Influence of pH on the buccal absorption of morphine sulphate and its major metabolite, morphine-3-glucuronide. J Pharm Pharmcol 1987; 39: 934-935.

Nair MK, Chetty DJ, Ho H, Chein YW. Biomembrane permeation of nicotine: mechanistic studies with porcine mucosa and skin. J Pharm Sci 1997; 86: 257-262.

Nielson MN, Rassing MR. Nicotine permeability across the buccal TR 146 cell culture model and porcine mucosa in vitro: effect of pH and concentration. Eur J Pharm Sci 2002; 16: 151-157.

Deneer VH, Drese GB, Roemele PE, Verhoef JC, Lie-A-Huen L, Kingma JH, Brouwers JR, Junginger HE. Buccal transport of flecainide and sotalol: effect of a bile salt and ionization state. Int J Pharm 2002; 241: 127-134.

Coutel-Egros A, Maitani Y, Veillard M, Machida Y, Nagai T. Combined effects of pH, cosolvent and penetration enhancers on the in vitro buccal absorption of propanolol through excised hamster cheek pouch. Int J Pharm 1992; 84: 117-128.

Nielsen HM, Rassing MR. TR146 cells grown on filters as a model of human buccal epithelium: III. Permeability enhancement by different pH value, different osmolarity value, and bile salts. Int J Pharm 1999; 185: 215-225.

Gandhi RB, Robinson JR. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm 1992; 85: 129-140.

Shojaei AH, Berner B, Li X. Transbuccal delivery of acyclovir: I. in vitro determination of buccal transport. Pharm Res 1998; 15: 1182-1188.

Beckett AH, Moffat AC. Correlation of partition coefficients in n-heptane –aqueous systems with buccal absorption data for a series of amines and acids. J Pharm Pharmcol 1969; 21: Suppl 144S-150S.

Beckett AH, Triggs EJ. Buccal absorption of basic drugs and its application as an in vivo model passive drug transfer through lipid membrane. J Pharm Pharmcol 1967; 19: Suppl 31S-41S.

Le Brun PPH, Fox PLA, De Vries ME, Bodde HE. In vitro penetration of some â-adrenoreceptor blocking drugs through porcine buccal mucosa. Int J Pharm 1989; 49: 141-145.

Chen L, Hui-Nan X, Xiao-Ling L. In vitro permeation of tetramethylpyrazine across porcine buccal mucosa. Acta Pharmacol Sin 2002; 23: 792-796.

Garren KW, Repta AJ. Buccal drug absorption-II. In vitro diffusion across the hamster cheek pouch. J Pharm Sci 1989; 78: 160-164.

Chettu DJ, Chen LL, Chien YW. Characterization of captopril sublingual permeation: determination of routes and mechanisms. J Pharm Sci 2001; 90: 1868-1877.

Ishizawa T, Hayashi M, Awazu S. Paracellular and transcellular permeabilities of fosfomycin across small intestinal membrane of rat and rabbit by voltage-clamp method. J Pharmacobiodyn 1991; 14: 583-589.

Toropainen E, Ranta V, Vellonen K, Palmgren J, Tavitie A, Laavola M, Suhonen P, Hamalanen KM, Auriola S, Urtti A. Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model. Eur J Pharm Sci 2003; 20: 99-106.

Zhang H, Robinson JR. In Vitro Methods for Measuring Permeability of the Oral Mucosa, in Swarbrick, J: Boylan, JC, (eds), Oral Mucosal Drug Delivery. 1st ed., Vol 74, Marcel Dekker, INC, New York, NY, pp 85-100, 1996.

Morgan DJ, Paull JD, Richmond BH, Wilsen-Evered E, Ziccone SP. Pharmacokinetics of intravenous and oral salbutamol and its sulfate conjugate. Br J Clin Pharmacol 1986; 22: 587-593.

Sweetman SC. Martindale: The complete drug reference, 33th Edn, 2002, Pub. By Pharmaceutical press, London, 770-773.

Takahashi K, Sakano H, Rytting HJ, Numata N, Kuroda S. Influence of pH on the permeability of p- toluidine and aminopyrine through shed snake skin as a model membrane. Drug Dev Ind Pharm 2001; 27: 159-164.

Hoogstraate AJ, Senel S, Cellander C, Verhoef JC, Junginger HE, Bodde HE. Effects of bile salts on transport routes and routes of FITC-lebelled compounds across porcine buccal epithelium in vitro. J Contr Rel 1996; 40: 211-221.

Tsutsumi K, Obata Y, Nagai T, Loftsson T, Takayama K. Buccal absorption of ergotamine tartrate using the bioadhesive tablet system in guinea pigs. Int J Pharm 2002; 238: 161-170.

Cui Z., Mumper RJ. Buccal transmucosal delivery of calcitonin in rabbits using thin-film composite. Anesth Analg 1992; 74: 937-938.

Jeppson AB, Johanson K, Waldeck B. Steric aspect of agonism and antagonism at beta-adrenoreceptors: experiments with

the enantiomers of terbutaline. Acta Pharmacol Toxicol 1984; 54: 285-291.

Descargas

Publicado

2005-09-20

Cómo citar

1.
SUTARIYA V, MASHRU R, SANKALIA M, SANKALIA J. Administración transbucal del sulfato de salbutamol: Determinación in vitro de las rutas de transporte bucal. Ars Pharm [Internet]. 20 de septiembre de 2005 [citado 22 de julio de 2024];46(4):337-52. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/5082

Número

Sección

Artículos Originales