Diseño de biomateriales inyectables para aplicaciones biomédicas y farmacéuticas: pasado, presente y futuro de los implantes generados in situ

Autores/as

  • A SOSNIK Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científi cas y Técnicas Junín 956, 6o Piso. Buenos Aires CP1113, Argentina

Palabras clave:

Biomaterials inyectables, Cirugía mínimamente invasiva, Pastas termoplásticas, Precipitación in situ, Polímeros entrecruzados in situ, Materiales inteligentes, Matrices termosensibles, Matrices pH-dependientes, Matrices de comportamiento dual

Resumen

El implante de materiales biomédicos macroscópicos sólidos requiere de procedimientos quirúrgicos convencionales,comúnmente asociados con un extenso daño tisular. Con el objetivo de superar estas limitaciones, se han diseñadomatrices capaces de ser insertadas a través de metodologías mínimamente invasivas (inyección). De acuerdo a laspropiedades estructurales del implante luego de la inyección, los mismos pueden clasifi carse en 2 categorías: (1)implantes carentes de integridad estructural o no continuos y (2) materiales que forman un implante estructuralmenteíntegro o continuo. La primera estrategia se basa en la inyección de micro o nanopartículas suspendidas enun vehículo biocompatible. Debido a que no poseen propiedades mecánicas, estos implantes pueden migrar del sitiode inserción. Para sobreponerse a esta desventaja, se han diseñado sistemas que combinan: (1) baja viscosidad yalta fl uidez al momento de la inyección con (2) un aumento pronunciado en las propiedades mecánicas a posteriori,que resultará en la formación de un implante sólido y con límites bien defi nidos. El presente trabajo introduce demanera concisa y detallada las distintas estrategias desarrolladas durante los últimos 20 años para el diseño de estetipo de implantes, así como también las perspectivas futuras en el área.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Sosnik A. Novel Biodegradable Polymers for Non-Invasive Surgery. PhD Thesis, The Hebrew University of Jerusalem, 2003.

Gamisans F, Lacoulonche F, Chauvet A, Espina M, García ML, et al. Flurbiprofen-loaded nanospheres: Analysis of the matrix structure by thermal methods. Int J Pharm 1999; 79: 37-48.

Igartua M, Hernandez RM, Esquisabel A, Gascón AR, Calvo MB, Pedraz JL. Enhanced immune response after subcutaneous and oral immunization with biodegradable PLGA microspheres. J Control Rel 1998; 56: 63-73.

Brannon-Peppas L, Controlled release of β-estradiol from biodegradable microparticles within silicone matrix; In: Polymer

Biomaterials in Solution, as Interfaces and as Solids. 1st ed. Utrech (The Netherlands): VSP-Utrecht; 1995.

Kawaguchi H. Functional polymer microspheres. Prog Polym Sci 2000; 25: 1171-1210.

Nivasu VM, Reddy TT, Tammishetti S. Functional polymer microspheres. Biomaterials 2004; 24: 3283-3291.

Oh SH, Kim JK, Song KS, Noh SM, Ghil SH, Yuk SH, Lee JH. Prevention of postsurgical tissue adhesion by antiinflammatory

drug-loaded Pluronic mixtures with sol-gel transition behavior. J Biomed Mater Res Part A 2005; 72: 306-316.

Homicz MR, Watson D. Review of Injectable Materials for Soft Tissue Augmentation. Facial Plast Surg 2004; 20: 21-29.

Merkli A, Heller J, Tabatabay C, Gurny R. The use of acidic and basic excipients in the release of 5-fluorouracil and mitomycin C from a semi-solid bioerodible poly(ortho ester). J Control Rel 1995; 33: 415-421.

Weiss P, Gauthier O, Bouler J-M, Grimandi G, Daculsi G. Injectable bone substitute using a hydrophilic polymer. Bone 1999; 25: 67S-70S.

Charnley J. Total hip replacement. JAMA 1974; 230: 1025-1028.

DiMaio FR. The science of bone cement: A historical review. Orthopedics 2002; 25: 1399-1407.

Kaplan EN, Falces E, Tolleth H. Clinical utilization of injectable collagen. Ann Plast Surg 1983; 10: 437-451.

Mallapragada SK, Narasimhan B. Biomaterials: Editorial. Biomaterials 2002; 23: 4305.

Scopelianos AG, Bezwada RS, Arnold SC. Injectable liquid copolymers for soft tissue repair and augmentation. US Patent 5824333, 1998.

Bezwada RS, Arnold SC, Shalaby SW, Williams BL. Liquid absorbable copolymers for parenteral applications. US Patent 5631015, 1997.

Bezwada RS. Liquid copolymers of epsilon-caprolactone and lactide. US Patent 5442033, 1995.

Heller J, Barr J, Ng SY, Shen H-R, Schwach-Abdellaoui K, Gurny R, et al. Development and applications of injectable poly(ortho esters) for pain control and periodontal treatment. Biomaterials 2002; 23: 4397-4404.

Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Rel 2002; 80: 9-28.

Walter KA, Cahan MA, Gur A, Tyler B, Hilton J, Colvin OM, et al. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res 1994; 54: 2207-2212.

Zhang X, Jackson JK, Wong W, Min W, Cruz T, Hunter WL, et al. Development of biodegradable polymeric paste formulations for taxol: An in vitro and in vivo study. Int J Pharm 1996; 137: 199-208.

Einmahl S, Behar-Cohen F, Tabatabay C, Savoldelli M, Hermies FD, Chauvaud D, et al. A viscous bioerodible poly(ortho ester) as a new biomaterial for intraocular application. J Biomed Mater Res Part A 2000; 50: 566-573.

Sosnik A, Cohn D, Polymer 2003; 44: 7033-7042.

Dunn RL, English JP, Cowsar DR, Vanderbilt DP. Biodegradable in-situ forming implants and methods of producing the same. US Patent 4938763, 1990.

Tipton AJ, Fujita SM, Frank KR, Dunn RL. A biodegradable, injectable delivery system for nonsteroidal anti-inflammatory drugs. Pharm Res 1991; 9: S196.

Dunn RL, English JP, Cowsar DR, Vanderbilt DP. Biodegradable in-situ forming implants and methods of producing the same. US Patent 5278201, 1994.

Dunn RL, Powers BE, Yewey GL, Fujita SM, Josephs KR, Whitman SL, et al. Sustained release of cisplatin in dogs from an injectable implant delivery system. J Bioact Compat Polym 1996; 11: 286-300.

Dunn RL, English JP, Cowsar DR, Vanderbilt DP. Biodegradable in-situ forming implants and methods of producing the same. US Patent 5733950, 1998.

Dunn RL, English JP. Biodegradable polymer composition. US Patent 6528080, 2003.

Dunn RL, Garrett JS, Ravivarapu H, Chandrashekar BL. Polymeric delivery formulations of leuprolide with improved efficacy. US Patent 6773714, 2004.

Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Rel 2002; 80: 9-28.

Kost J, Eliaz R. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res Part A 2000; 50: 388-396.

Eliaz RE, Wallach D, Kost J. Delivery of soluble tumor necrosis factor receptor from in-situ forming PLGA implants: In-vivo. Pharm Res 2000; 17: 1546-1550.

Wang L, Kleiner L, Venkatraman S. Structure formation in injectable poly(lactide-co-glycolide) depots. J Control Rel 2003;90:345-354.

Wang L, Venkatraman S, Kleiner L. Drug release from injectable depots: Two different in vitro mechanisms. J Control Rel 2004; 99: 207-216.

Wang L, Venkatraman S, Gan LH, Kleiner L. Structure formation in injectable poly(lactide-co-glycolide) depots. II. Nature of the gel. J Biomed Mater Res Part B 2005; 72: 215-222.

Jordan O, Doelker E, Defabiani N, Caviezel A, Iselin C. Novel injectable urethral bulking agents for the treatment of urinary incontinence. J Mater Sci Mater Med. 2004; 15: 519-522.

Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliver Rev 2002; 43: 3-12.

Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R. Transdermal photopolymerization for minimally invasive implantation. Proc Nat Acad Sci US 1999;96:3104-3107.

Elisseeff J, McIntosh W, Fu K, Blunk T, R. Langer. Controlled-release of IGF-I and TGF-â1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 2001; 19: 1098-1104.

Elisseeff J, Anseth KS, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 1999; 104: 1014-1022.

Kim BS, Hrkach JS, Langer R. Biodegradable photo-crosslinked poly(ether-ester) networks for lubricious coating. Biomaterials 2000; 21: 259-265.

Burdick JA, Ward M, Liang E, Young MJ, Langer R. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials 2006; 27: 452-459.

Piantino J, Burdick JA, Goldberg D, Langer R, Benowitz, LI. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Exp Neurol 2006; 201: 359-367.

Sawhney AS, Pathak CP, Hubbell JA. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-copoly(á-hydroxy acid) diacrylate macromers. Macromolecules 1993; 26: 581-587.

Sawhney AS, Pathak CP, van Rensburg JJ, Dunn RC, Hubbell JA. Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J Biomed Mater Res 1994; 28: 831-838.

Hill-West JL, Chowdhury SM, Sawhney AS, Pathak CP, Dunn RC, Hubbell JA. Prevention of postoperative adhesions in the rat by in situ photopolymerization of bioresorbable hydrogel barriers. Obst & Gynec 1994; 83: 59-64.

Cruise GM, Hegre OD, Scharp DS, Hubbell JA. A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate upon porcine islets. Biotech Bioeng 1998; 57: 655-665.

Halstenberg S, Panitch A, Rizzi S, Hall H, Hubbell JA. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 2005; 3: 710-723.

Rizzi SC, Hubbell JA. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules 2005; 6: 1226-1238.

Jo S, Shin H, Shung A, Fisher JP, Mikos AG. Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 2001; 34: 2839-2844.

Payne RG, Yaszemski MJ, Yasko AW, Mikos AG. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials 2002; 23: 4359-4371.

Shung AK, Behravesh E, Jo S, Mikos AG. Crosslinking characteristics of and cell adhesion to an injectable poly(propylene

fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system. Tissue Eng 2003; 9: 243-254.

Timmer MD, Shin H, Horch RA, Ambrose CG, Mikos AG. In vitro cytotoxicity of injectable and biodegradable poly(propylene fumarate)-based networks: Unreacted macromers, cross-linked networks, and degradation products. Biomacromolecules 2003; 4: 1026-1033.

Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 2002; 23: 4325-4332.

Metters AT, Anseth KS, Bowman CN. Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 2000; 41: 3993-4004.

Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN. In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Rel 2002; 78: 199-209.

Bryant SJ, Nuttelman CR, Anseth KS. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 2000; 11: 439-457.

Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue

engineering. Biomaterials 2002; 23: 4315-4323.

Li Q, Williams CG, Sun DD, Wang J, Leong K, Elisseeff JH. Photocrosslinkable polysaccharides based on chondroitin sulfate. J Biomed Mater Res Part A 2004 ;68: 28-33.

Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide

hydrogels formed by Michael-type addition. Biomacromolecules 2003; 4: 713-722.

Shu XZ, Ghosh K, Liu Y, Palumbo FS, Luo Y, Prestwich GD, et al. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res Part A 2004; 68: 365-375.

Cai S, Liu Y, Xiao ZS, Shu XZ, Prestwich GD. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 2005; 26: 6054-6067.

Shu XZ, Liu Y, Luo Y, Roberts MC, Prestwich GD. Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 2002; 3: 1304-1311.

Liu Y, Shu XZ, Gray SD, Prestwich GD. Disulfide-crosslinked hyaluronan-gelatin sponge: Growth of fibrous tissue in vivo. J Biomed Mater Res Part A 2004; 68: 142-149.

Liu Y, Shu XZ, Prestwich GD. Biocompatibility and stability of disulfide-crosslinked hyaluronan films . Biomaterials 2005; 26: 4737-4746.

Brown AL, Srokowski EM, Shu XZ, Prestwich GD, Woodhouse KA. Development of a model bladder extracellular matrix combining disulfide cross-linked hyaluronan with decellularized bladder tissue. Macromolecular Bioscience 2006; 6: 648-657.

Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J, Cheung C, et al. Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res Part A 2000; 52: 577-586.

Harris JM, Introduction to biotechnical and biomedical applications of poly(ethylene glycol). 1st ed. In: Topics in Applied Chemistry. New York (NY):Plenum Press;1992.

Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997; 388: 860-862.

Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Del Rev 2002; 54: 37-51.

Ruel-Gariépy E, Leroux J-C. In situ-forming hydrogels - Review of temperature-sensitive systems. Eur J Pharm Biopharm 2004; 58: 409-426.

de las Heras Alarcón C, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev 2005; 3: 276-285.

Tanaka T. Collapse of gels and the critical end point. Phys Rev Lett 1978; 40: 820-823.

Hoffman AS. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Rel 1987; 6: 297-305.

Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000; 50: 27-46.

Krezanoski JZ. Clear, water-miscible, liquid pharmaceutical vehicles and compositions which gel at body temperature for drug delivery to mucous membranes. US Patent 4188373, 1980.

Alexandridis P, Hatton TA. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and Surf A 1995; 96: 1-46.

Reeve L, The poloxamers: their chemistry and medical applications. In: Handbook of Biodegradable Polymers. Vol.

Drug Targeting and Delivery. 2nd ed. London (UK):Harwood Academic Publishers;1997.

Bromberg L, Ron ES. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery.

Adv Drug Del Rev 1998; 31: 197-221.

Jeong B, Choi YK, Bae YH, Zentner G, Kim SW. New biodegradable polymers for injectable drug delivery systems. J Control Rel 1999; 62: 109-114.

Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 1999; 32: 7064-7069.

Lee HT, Lee DS. Thermoresponsive phase transitions of PLA-block-PEO-block-PLA triblock stereo-copolymers in aqueous solution. Macromol Res 2002; 10: 359-364.

Bae SJ, Suh JM, Sohn YS, Bae YH, Kim SW, Jeong B. Thermogelling poly(caprolactone-6-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 2005; 38: 5260-5265.

Chun Y, Mielewczyk SS, Breslauer KJ, Kohn J. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials. Part II: Study of inverse temperature transitions. Biomaterials 1999; 20: 265-272.

Song SC, Lee SB, Jin JI, Sohn YS. New class of biodegradable thermosensitive polymers. I. Synthesis and characterization of poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups. Macromolecules 1999; 32: 2188-2193.

Lee BH, Lee YM, Sohn YS, Song SC. A thermosensitive poly(organophosphazene) gel. Macromolecules 2002; 35: 3876-3879.

Sohn YS, Kim K, Song R, Jeong B. The relationship of thermosensitive properties with structure of organophosphazenes.

Polymer 2004; 45: 3081-3084.

Fisher JP, Jo S, Mikos AG, Reddi AH. Thermoreversible hydrogel scaffolds for articular cartilage engineering. J Biomed Mater Res Part A 2004; 71: 268-274.

Uraki Y, Imura T, Kishimoto T, Ubukata M. Body temperature-responsive gels derived from hydroxypropylcellulose bearing lignin. Carbohydrate Polym 2004; 58: 123-130.

Ohya S, Nakayama Y, Matsuda T. In vivo evaluation of poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as an in situ-formable scaffold. J Artif Org 2004; 7: 181-186.

Chung HJ, Bae JW, Park HD, Lee JW, Park KD. Thermosensitive chitosans as novel injectable biomaterials. Macromol Symp 2005; 224: 275-286.

Chung HJ, Go DH, Bae JW, Jung IK, Lee JW, Park KD. Synthesis and characterization of Pluronic® grafted chitosan copolymer as a novel injectable biomaterial. Curr Appl Phys 2005; 5: 485-488.

Don TM, Chen HR. Synthesis and characterization of AB-crosslinked graft copolymers based on maleilated chitosan and N-isopropylacrylamide. Carbohydrate Polym 2005; 61: 334-347.

Bromberg L, Temchenko M. Self-assembly in aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)-bpoly(ethylene oxide)-b-poly(vinyl alcohol). Langmuir 1999; 15: 8633-8639.

Bromberg L, Temchenko M, Hatton TA. Dually responsive microgels from polyether-modified poly(acrylic acid): Swelling and drug loading. Langmuir 2002; 18: 4944-4952.

Bromberg L, Temchenko M, Alakhov V, Hatton TA. Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels. Int J Pharm 2004; 282: 45-60.

Huang K, Lee BP, Ingram DR, Messersmith PB. Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. Biomacromolecules 2002; 3: 397-406.

Bulmus V, Ding Z, Long CJ, Stayton PS, Hoffman AS. Site-specific polymer- Streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. Bioconjugate Chem 2000; 11: 78-83.

Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A. Drug targeting using thermally responsive polymers and local hyperthermia. J Control Rel 2001; 74: 213-224.

Hoffman AS, Stayton PS, Press O, Murthy N, Lackey CA, Cheung C, et al. Design of “smart” Polymers that can direct intracellular drug delivery. Polym Adv Tech 2002; 13: 992-999.

Chilkoti A, Dreher MR, Meyer DE, Raucher D. Targeted drug delivery by thermally responsive polymers. Adv Drug Del Rev 2002; 54: 613-630.

Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, et al. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 2003; 4: 344-349.

Akiyama Y, Kikuchi A, Yamato M, Okano T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 2004; 20: 5506-5511.

Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, et al. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 2005; 26: 1885-1893.

Ide T, Nishida K, Yamato M, Sumide T, Utsumi M, Nozaki T, et al. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 2006; 27: 607-614.

Attwood D, Collett JH, O´Connor CA. The effect of gamma irradiation on the surface, rheological and micellar behaviour of the block copolymer, Tetronic 908. Int J Pharm 1990; 65: 201-209.

Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA. Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 1998; 9: 475-487.

Barichello JM, Morishita M, Takayama K, Nagai T. Absorption of insulin from Pluronic F-127 gels following subcutaneous

administration in rats. Int J Pharm 1999; 184: 189-198.

Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. TIBTECH 2000; 18: 412-420.

Saim AB, Cao Y, Weng Y, Chang CN, Vacanti MA, Vacanti CA, Eavey RD. Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 2000; 10: 1694-1697.

Scherlund M, Brodin A, Malmsten M. Micellization and gelation in block copolymer systems containing local anesthetics. Int J Pharm 2000; 211: 37-49.

Cellesi F, Tirelli N, Hubbell JA. A new process for cell encapsulation: Thermal gelation and chemical cross-Linking in ‘tandem’. Biomaterials 2004; 25: 5115-5124.

Sosnik A, Sefton MV. Semi-synthetic collagen/poloxamine matrices for tissue engineering. Biomaterials 2005; 26: 7425-7435.

Steinleitner A, Lambert H, Kazensky C, Cantor B. Poloxamer 407 as an intraperitoneal barrier material for the prevention of postsurgical adhesion formation and reformation in rodent models for reproductive surgery. Obst & Gynecol 1991; 77: 48-52.

Esposito E, Carotta Y, Scabbia A, Trombelli L, D’Antona P, Menegatti E, Nastruzzi C. Comparative analysis of tetracycline-

containing dental gels: Poloxamer- and monoglyceride-based formulations. Int J Pharm 1996; 142:9-23.

Cohn D, Sosnik A, Levy A. Improved reverse thermo-responsive polymeric systems, Biomaterials 2003; 24: 3707-3714.

Cohn D, Lando G, Sosnik A, Garty S, Levi A. Novel degradable reverse thermoresponsive multiblock copolymers, Biomaterials 2006; 27:1718-1727.

Cohn D, Sosnik A. Novel reverse thermo-responsive injectable poly(ether carbonate)s. J Mat Sci Mater Med 14; 175-180: 2003.

Sosnik A, Cohn D. Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers, Biomaterials 2005; 26: 349-357.

Ricardo NMPS, Honorato SB, Yang Z, Castelletto V, Hamley IW, Yuan X-F, et al. Gelation of concentrated micellar solutions of a triblock copolymer of ethylene oxide and styrene oxide, S5E45S5. Langmuir 2004; 20: 4272-4278.

Harrison WJ, Aboulgasem GJ, Elathrem FAI, Nixon SK, Attwood D,et al. Micelles and gels of mixed triblock copoly(oxyalkylene)s in aqueous solution. Langmuir 2005; 21: 6170-6178.

Ricardo NMPS, Pinho MEN, Yang Z, Attwood D, Booth C. Controlling the gelation of aqueous micellar solutions of ethylene-oxide-based block copoly(oxyalkylene)s. Int J Pharm 2005; 300: 22-31.

Taboada P, Velasquez G, Barbosa S, Castelletto V, Nixon SK, Yang Z, et al. Block copolymers of ethylene oxide and phenyl glycidyl ether: Micellization, gelation, and drug solubilization. Langmuir 2005; 21: 5263-5271.

Taboada P, Velasquez G, Barbosa S, Yang Z, Nixon SK, Zhou Z. Micellization and drug solubilization in aqueous solutions of a diblock copolymer of ethylene oxide and phenyl glycidyl ether. Langmuir 2006; 22: 7465-7470.

Li Y, Tang Y, Narain R, Lewis AL, Armes SP. Biomimetic stimulus-responsive star diblock gelators. Langmuir 2005; 21: 9946-9954.

Li Y, Narain R, Ma Y, Lewis AL, Armes SP. Biomimetic thermo-responsive star diblock gelators. Chem Commun 2004; 23: 2746-2747.

Li C, Tang Y, Armes SP, Morris CJ, Rose SF, Lloyd AW, et al. Synthesis and characterization of biocompatible thermo-responsive gelators based on ABA triblock copolymers. Biomacromolecules 2005; 6: 994-999.

Li C, Buurma NJ, Haq I, Turner C, Armes SP, Castelletto V, et al. Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Langmuir 2005; 21: 11026-11033.

Lin H, Cheng Y-L. In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(n-isopropylacrylamide) of varying architectures. Macromolecules 2001; 34: 3710-3715.

Ma Y, Tang Y, Billingham NC, Armes SP, Lewis AL. Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers. Biomacromolecules 2003; 4: 864-868.

Liu Y-Y, Fan X-D. Synthesis, properties and controlled release behaviors of hydrogel networks using cyclodextrin as pendant groups. Biomaterials 2005; 26: 6367-6374.

Park SY, Bae YH. Novel pH-sensitive polymers containing sulfonamide groups. Macromol Rapid Commun 1999; 20: 269-273.

Stevens MM, Allen S, Davies MC, Roberts CJ, Sakata JK, Tendler SJB, et al. Molecular level investigations of the inter- and intramolecular interactions of pH-responsive artificial triblock proteins. Biomacromolecules 2005; 6: 1266-1271.

Kimura M, Fukumoto K, Watanabe J, Takai M, Ishihara K. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers. Biomaterials 2005; 26: 6853-6862.

González N, Elvira C, San Román J. Novel Dual-Stimuli-Responsive Polymers Derived from Ethylpyrrolidine. Macromolecules 2005; 38: 9298-9303.

Determan MD, Cox JP, Seifert S, Thiyagarajan P, Mallapragada SK. Synthesis and characterization of temperature and pH-responsive pentablock copolymers. Polymer 2005; 46: 6933-6946.

Kim JH, Lee SB, Kim SJ, Lee YM. Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels. Polymer 2002; 43: 7549-7558.

Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J. A novel pH- and ionic-strength-sensitive carboxy methyl dextran

hydrogel. Biomaterials 2005; 26: 4677-4683.

Ramachandran S, Tseng Y, Yu YB. Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear

modulus. Biomacromolecules 2005; 6: 1316-1321.

Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 2006; 27: 2370-2379.

Owen DH, Peters JJ, Lavine ML, Katz DF. Effect of temperature and pH on contraceptive gel viscosity. Contraception 2003; 67: 57-64.

Becker TA, Kipke DR. Flow properties of liquid calcium alginate polymer injected through medical microcatheters for endovascular embolization. J Biomed Mater Res Part A 2002; 61: 533-540.

Barbucci R, Leone G, Lamponi S. Thixotrophy property of hydrogels to evaluate the cell growing on the inside of the material bulk (Amber effect). J Biomed Mater Res Part B 2006; 76: 33-40.

Slager J, Domb AJ. Biopolymer stereocomplexes. Adv Drug Del Rev 2003; 55: 549-583.

Slager J, Domb AJ. Heterostereocomplexes prepared from D-PLA and L-PLA and leuprolide. II. Release of leuprolide. Biomacromolecules 2003; 4: 1316-1320.

Slager J, Domb AJ. Heterostereocomplexes prepared from D-poly(lactide) and leuprolide. I. Characterization. Biomacromolecules 2003; 4: 1308-1315.

Bos GW, Jacobs JJL, Koten JW, Van Tomme S, Veldhuis T, van Nostrum CF, et al. In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur J Pharm Sci 2004; 21: 561-567.

Bos GW, Hennink WE, Brouwer LA, den Otter W, Veldhuis TFJ, van Nostrum CF, et al. Tissue reactions of in situ formed dextran hydrogels crosslinked by stereocomplex formation after subcutaneous implantation in rats.

Biomaterials 2005; 26: 3901-3909.

Anand B, Pisal SS, Paradkar AR, Mahadik KR. Applications of organogels in pharmaceuticals. J Sci Ind Res 2001;

: 311-318.

Shchipunov YuA. Lecithin organogelA micellar system with unique properties. Colloids Surf A: Physicochem Eng Asp 2001; 183-185: 541-554.

Murdan S. Organogels in drug delivery. Exp Op Drug Del 2005; 2: 489-505.

Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review. AAPS PharmSciTech 2005; 6: art. no. 40.

Plourde F, Motulsky A,Couffin-Hoarau A-C, Hoarau D, Ong H, et al. First report on the efficacy of L-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs. J Control Rel 2005; 108: 433-441.

Shikanov A, Domb AJ. Poly(sebacic acid-co-ricinoleic acid) biodegradable injectable in situ gelling polymer. Biomacromolecules 2006; 7: 288-296.

Sosnik A, Cohn D, San Roman J, Abraham GA. Crosslinkable PEO-PPO-PEO-based reverse thermo-responsive gels as potentially injectable materials. J Biomater Sci Pol Ed 2003; 14: 227-239.

Cohn D, Sosnik A, Garty S. Smart hydrogels for in situ-generated implants. Biomacromolecules 2005; 6: 1168-1175.

Sosnik A, Cohn D. Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers. Biomaterials 2004; 25: 2851-2858.

Descargas

Publicado

2007-04-20

Cómo citar

1.
SOSNIK A. Diseño de biomateriales inyectables para aplicaciones biomédicas y farmacéuticas: pasado, presente y futuro de los implantes generados in situ. Ars Pharm [Internet]. 20 de abril de 2007 [citado 22 de julio de 2024];48(1):83-102. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/4979

Número

Sección

Artículos de revisión