Sistema de administración de fármacos Aquasomal: Especial énfasis en las técnicas de formulación y aplicaciones

Autores/as

  • Prakash Rajak Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India https://orcid.org/0000-0001-7072-7705
  • Rofiqul Islam University of Science and Technology, Department of Pharmaceutical Sciences, Meghalaya, India
  • Arka Karmakar Dibrugarh University, Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh, Assam, India.
  • Biman Bhuyan Dibrugarh University, Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh, Assam, India

DOI:

https://doi.org/10.30827/ars.v64i4.28264

Palabras clave:

Aquasomas; nanotecnología; autoensamblaje; nanopartículas cerámicas; Fosfato calcico

Resumen

Introducción: Aquasome es un sistema portador de nanopartículas autoensamblado con tres capas. El sistema se compone de un núcleo sólido nanocristalino interno recubierto de oligómero polihidroxilado. Adsorbidas en la capa recubierta se encuentran moléculas de fármacos o compuestos bioquímicamente activos. El autoensamblaje en este sentido se refiere a la formación independiente de moléculas en patrones organizados, de larga duración y con enlaces no covalentes. nueva tecnología de administración de fármacos. El artículo aborda principalmente los procesos de formulación utilizados para crear nanoestructuras autoensambladas y sus diversas aplicaciones posibles.

Método: En la búsqueda bibliográfica se utilizaron varias bases de datos en línea, incluidas Science Direct, Medline, Web of Science, Google Scholar y Scopus. Se realizaron búsquedas en los conjuntos de datos en busca de entradas de estudios hasta julio de 2023. El documento de revisión aborda especialmente muchos elementos de la formación de aquasomas por parte de varios investigadores que emplean métodos/técnicas modificadas como la coprecipitación, la autoprecipitación, la pulverización catódica, etc. También ilustra una variedad de campos de terapia en los que se ha reconocido que el aquasoma tiene una gran influencia, como el oxígeno y el transporte de extractos.

Resultados: El núcleo sólido es responsable de brindar estabilidad estructural, mientras que el recubrimiento oligomérico es crucial para proteger contra la deshidratación y estabilizar las moléculas bioactivas. Este vehículo de administración de fármacos biodegradable a escala nanométrica muestra una tendencia a acumularse en el hígado y los músculos. La no modificación de la adsorción del fármaco en la superficie del aquasoma facilita una respuesta farmacológica rápida al permitir el reconocimiento sin obstrucciones del receptor en el sitio de acción.

Conclusiones: Aquasome, una molécula autoensamblada de tres capas, es un sistema de administración de fármacos simple pero nuevo con un prometedor potencial de transporte para aumentar la solubilidad y la biodisponibilidad de fármacos poco solubles. A pesar de una serie de desafíos, como el consumo de tiempo, los procesos sofisticados, la seguridad y los altos costos de investigación, el aquasome puede surgir como un vehículo vesicular alternativo en el futuro.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11(3):129. Doi:10.3390/pharmaceutics11030129.

Antil R, Kadawla M, Rao L. Recent advances in aquasomes carrier nanotechnology for drug delivery. Int J Nanobiotechnol. 2021;7(1):35-44.

Sarangi MK, Padhi S. Novel herbal drug delivery system: An overview. Arch Med Health Sci. 2018;6(1):171-179. Doi: 10.4103/amhs.amhs_88_17.

Samson K, Varalakshmi M, Prathima K. Aquasomes: A vesicular, self-assembled ceramic nano-particulate drug carrier. Res Rev J Pharm Sc.2021;12(3):1-14.

Alenzi AM, Albalawi SA, Alghamdi SG, Albalawi RF, Albalawi HS, Qushawy M. Review on different vesicular drug delivery systems (VDDSs) and their applications. Recent Pat Nanotechnol. 2023;17(1):18-32. Doi: 10.2174/1872210516666220228150624.

Bayda S, Hadla M, Palazzolo S, Riello P, Corona G, Toffoli G, Rizzolio F. Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem. 2018;25(34):4269-4303. Doi: 10.2174/0929867325666171229141156.

Pavani V, Dintakurthi S, Aslam S, Gollagudem R, Pabbapi K. Aquasomes: a novel drug carrier system. ChemInform. 2012;3(4):123-127.

Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev. 2020;156:188-213. Doi: 10.1016/j.addr.2020.06.020.

Kossovsky N, Gelman A, Rajguru S, Nguyen R, Sponsler E, Hnatyszyn H, Chow K, Chung A, Torres M, Zemanovich J. Control of molecular polymorphisms by a structured carbohydrate/ceramic delivery vehicle—aquasomes. J Control Release. 1996;39(2-3):383-388. Doi: 10.1016/0168-3659(95)00169-7.

Upadhyay P, Singh D, Upadhyay S. Vesicular approach review on nanocarriers bearing curcumin and applications. Recent Adv Drug Deliv Formul. 2022. Doi: 10.2174/2667387816666220404092415.

Kossovsky N, Gelman A, Sponsler EE, Hnatyszyn HJ, Rajguru S, Torres M, Pham M, Crowder J, Zemanovich J, Chung A. Surface-modified nanocrystalline ceramics for drug delivery applications. Biomaterials 1994;15(15):1201-1207. Doi: 10.1016/0142-9612(94)90270-4

Mesariya S, Joshi K, Jain H, Upadhyay UM. Aquasomes- A self-assembled nanotechnology system. Int J Res Pharm Sci. 2011;2(3):492-496.

Kaushik JK, Bhat R. Why Is Trehalose an Exceptional Protein Stabilizer?: An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem. 2003;278(29):26458-26465. Doi: 10.1074/jbc.M300815200.

Reulecke I, Lange G, Albrecht J, Klein R, Rarey M. Towards an integrated description of hydrogen bonding and dehydration: decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem. 2008; 3(6):885-897. Doi: 10.1002/cmdc.200700319.

Jagdale S, Karekar S. Bird’s eye view on aquasome: Formulation and application. J Drug Deliv Sci Technol. 2020;58:1017-76. Doi.:10.1016/j.jddst.2020.101776.

Jain SS, Jagtap PS, Dand NM, Jadhav KR, Kadam VJ. Aquasomes: A novel drug carrier. J Appl Pharm Sci. 2012;2(01):184-192.

Haberland M, Fless G, Scanu A, Fogelman AM. Malondialdehyde modification of lipoprotein (a) produces avid uptake by human monocyte-macrophages. J Biol Chem. 1992;267(6):4143-4151.

Kajbafvala A, Bahmanpour H, Maneshian MH, Li M. Self-assembly techniques for nanofabrication J Nanomater. 2013. Doi:10.1155/2013/158517

Li LL, An HW, Peng B, Zheng R, Wang H. Self-assembled nanomaterials: design principles, the nanostructural effect, and their functional mechanisms as antimicrobial or detection agents. Mater Horiz. 2019;6(9):1794-1811. Doi:10.1039/C8MH01670D.

Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. Nanomed: Nanotechnol Biol Med. 2018;14(7):2023-2050. Doi: 10.1016/j.nano.2018.05.021.

Kulkarni S, Prabhakar B, Shende P. Aquasomes: Advanced Vesicular-based Nanocarrier Systems. Curr Pharm Des. 2022;28(29):2404-2414. Doi: 10.2174/1381612828666220728112741.

Pataquiva MA, Pia FM Monteiro FJ. Nanoparticles of hydroxyapatite: Preparation, characterization and cellular approach-an overview. Revista Mutis. 2017;3(2):43-57. Doi:10.21789/22561498.884.

Paul W, Sharma CP. Bioceramics, towards nano-enabled drug delivery: a mini review. Trends Biomater Artif Organs. 2005;1:7-11.

Jain S, Jain V, Mahajan S. Lipid based vesicular drug delivery systems. Adv. Pharm. 2014. Doi:10.1155/2014/574673

Correia R, Magalhaes M, Marques P, Senos A. Wet synthesis and characterization of modified hydroxyapatite powders. J Mater Sci Mater Med. 1996;7(8):501-505. Doi:10.1007/BF00705432.

Patil S, Pancholi S, Agrawal S, Agrawal G. Surface-modified mesoporous ceramics as delivery vehicle for haemoglobin. Drug Deliv. 2004;11(3):193-199. Doi: 10.1080/10717540490433976.

Vengala P, Dintakurthi S, Subrahmanyam CVS. Lactose coated ceramic nanoparticles for oral drug delivery. J Pharm Res. 2013;7(6):540-545. Doi:10.1016/j.jopr.2013.06.015.

Khopade A, Khopade S, Jain N. Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly (amidoamine) dendrimer. Int. J. Pharm. 2002;241(1):145-154. Doi: 10.1016/s0378-5173(02)00235-1.

Kim HM, Kokubo T, Miyazaki T, Nakamura T. Revised simulated body fluid. Key Eng Mater. 2001, 192-195.

Kossovsky N, Bunshah RF, Gelman A, Sponsler E, Umarjee DM, Suh TG, Prakash S, Doerr HJ, Deshpandey CV. A nondenaturing solid phase pharmaceutical carrier comprised of surface‐modified nanocrystalline materials. J Appl Biomater. 1990;1(4):289-294. Doi: 10.1002/jab.770010404.

Kommineni S, Ahmad S, Vengala P, Subramanyam C. Sugar coated ceramic nanocarriers for the oral delivery of hydrophobic drugs: Formulation, optimization and evaluation. Drug Dev Ind Pharm. 2012;38(5):577-586. Doi: 10.3109/03639045.2011.617884.

Wingler A. The function of trehalose biosynthesis in plants. Phytochem. 2002;60(5):437-440. Doi: 10.1016/s0031-9422(02)00137-1.

Almeida IS, Cardoso LA, Santos DM, Torné JM, Fevereiro PS. Trehalose and its applications in plant biotechnology. In Vitro Cell Dev Biol Plant. 2007;43(3):167-177. doi: 10.1007/s11627-006-9024-3.

Bunaciu AA, Aboul-Enein HY, Fleschin S. Application of Fourier transform infrared spectrophotometry in pharmaceutical drugs analysis. Appl Spectrosc Rev. 2010;45(3): 206-219. Doi:10.1080/00387011003601044.

Narang N. Aquasomes: Self-assembled systems for the delivery of bioactive molecules. Asian J Pharm. 2012; 6(2). Doi:10.22377/ajp.v6i2.61

Goyal AK, Rawat A, Mahor S, Gupta PN, Khatri K, Vyas SP. Nanodecoy system: a novel approach to design hepatitis B vaccine for immunopotentiation. Int J Pharm. 2006;309(1-2):227-233. Doi: 10.1016/j.ijpharm.2005.11.037.

Ludwig TG, Goldberg HJ., The anthrone method for the determination of carbohydrates in foods and in oral rinsing. J Dent Res. 1956;35(1):90-94.

Vengala P. Carbohydrate stabilized ceramic nanoparticles for the delivery of a poorly soluble drug, lornoxicam. Asian J Pharm. 2017;11(03):S497-S503.

Vengala P, Subrahmanyam C, Gangaraju M. In vitro and in vivo evaluation of piroxicam loaded ceramic nanoparticles. Int. J. Pharmaceut. Sci. Res. 2016;7:303-309.

Singh A, Deep A. Formulation and evaluation of nanoparticles containing atenolol. Int J Pharm Res. 2011;3(4):59-62.

Waghule T, Rapalli VK, Singhvi G, Gorantla S, Khosa A, Dubey SK, Saha RN. Design of temozolomide-loaded proliposomes and lipid crystal nanoparticles with industrial feasible approaches: comparative assessment of drug loading, entrapment efficiency, and stability at plasma pH. J Liposome Res. 2021;31(2):158-168. Doi: 10.1080/08982104.2020.1748648.

Nebija D, Noe CR, Urban E, Lachmann B. Quality control and stability studies with the monoclonal antibody, trastuzumab: application of 1D-vs. 2D-gel electrophoresis. Int J Mol Sci. 2014;15(4):6399-6411. Doi: 10.3390/ijms15046399.

Bellad K, Nanjwade B, Sarkar A, Srichana T, Shetake R. Development and evaluation of curcumin floating tablets. Pharm Anal Acta. 2020;12:622. Doi: 10.35248/2153-2435.20.11.622.

Mishra A, Patra S, Shukla SK, Pandey P, Shukla Y, Osmera P, Yadav P, Pandey M, Gupta R, Molina F. Current scenario of coronavirus pandemic. Adv Mater Lett. 2020;11(4):1-8.

Kaur K, Kush P, Pandey RS, Madan J, Jain UK, Katare OP. Stealth lipid coated aquasomes bearing recombinant human interferon-α-2b offered prolonged release and enhanced cytotoxicity in ovarian cancer cells. Biomed Pharmacother. 2015;69;267-276. Doi: 10.1016/j.biopha.2014.12.007.

Cherian AK, Rana A, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm. 2000;26(4):459-463. Doi: 10.1081/ddc-100101255.

Goyal AK, Khatri K, Mishra N, Mehta A, Vaidya B, Tiwari S, Vyas SP. Aquasomes-a nanoparticulate approach for the delivery of antigen. Drug Dev Ind Pharm. 2008;34(12):1297-1305. Doi: 10.1080/03639040802071661.

Rojas-Oviedo I, Salazar-Lopez RA, Reyes-Gasga J, Quirino-Barreda CT. Elaboration and structural analysis of aquasomes loaded with indomethacin. Eur. J. Pharm. Sci. 2007;32(3):223-230. Doi: 10.1016/j.ejps.2007.07.008.

Vengala P, Shwetha D, Sana A, Rekha G, Kumaraswamy P. Aquasomes: a novel drug carrier system. Int Res J Pharm. 2012;3(4):123-127.

Goyal AK, Khatri K, Mishra N, Mehta A, Vaidya B, Tiwari S, Paliwal R, Paliwal S, Vyas SP. Development of self-assembled nanoceramic carrier construct (s) for vaccine delivery. J Biomater Appl. 2009;24(1):65-84. Doi: 10.1177/0885328209104018.

Khan S, Tiwari T, Tyagi S, Bhowmik M, Joshi A, Dubey B. Preformulation studies and preperation of dithranol loaded solid lipid nanoparticles. Int J Res Dev Pharm L Sci. 2012;4:183-88.

Nanjwade BK, Hiremath GM, Manvi F, Srichana T. Formulation and evaluation of etoposide loaded aquasomes. J Nanopharm Drug Deliv.2013;1(1):92-101.

Kutlehria A, Koushik P, Sharma S, Kaur A. Aquasomes as a carrier system for oral delivery of bromelain. Int Res J Pharm. 2018;9(8):123-129. Doi:10.7897/2230-8407.098177.

Umashankar MS, Sachdeva RK, Gulati M. Aquasomes: a promising carrier for peptides and protein delivery. Nanomedicine: Nanotechnol Biol Med. 2010;6(3):419-426. Doi: 10.1016/j.nano.2009.11.002.

Rawat M, Singh D, Saraf S, Saraf S. Development and in vitro evaluation of alginate gel–encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme. Drug Dev Ind Pharm. 2008;34(2):181-188. Doi:10.1080/03639040701539479.

Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ueno A. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J Control Release. 2006;110(2):260-265. Doi:10.1016/j.jconrel.2005.09.051.

Banerjee S, Sen KK. Preparation and evaluation of surface modified nanoparticles of calcium phosphate as extract carrier. Int J Appl Pharm. 2020;12(4):248–257. Doi:10.22159/ijap.2020v12i4.38126.

Asfour MH. Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Drug Deliv Transl Res. 2021;11(1):1-23.Doi: 10.1007/s13346-020-00746-z.

Gupta AK, Gupta D, Gupta V. Aquasomes: A Self-Assembled Nano-Particulate Carrier System. Int J Cur Res Rev. 2021;13(4):44-52. Doi:10.31782/IJCRR.2021.13427.

Patel S, Aundhia C, Seth A, Shah N, Pandya K, Patel D. Aquasomes: a novel approach in drug carrier system. European J Pharm Med Res. 2016;3(9):198-201.

Priya MDK, Kumar V, Damini VK, Eswar K, Reddy KR, Raj BS, Sucharitha P. SOMES: A review on composition, formulation methods and evaluations of different types of “SOMES” drug delivery system. Int J Appl Pharm. 2020;12(6):7-18. Doi:10.22159/ijap.2020v12i6.38996.

Descargas

Publicado

2023-09-22

Cómo citar

1.
Rajak P, Islam R, Karmakar A, Bhuyan B. Sistema de administración de fármacos Aquasomal: Especial énfasis en las técnicas de formulación y aplicaciones. Ars Pharm [Internet]. 22 de septiembre de 2023 [citado 27 de diciembre de 2024];64(4):359-75. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/28264

Número

Sección

Artículos de revisión