Antimicrobial evaluation of a methanol extract of Beauveria bassiana<\em> against pathogenic bacteria of nosocomial importance

Authors

  • Jesús Manuel Villegas-Mendoza Instituto Politecnico Nacional
  • Ninfa M. Rosas-García Instituto Politécnico Nacional
  • Maribel Mireles-Martínez Instituto Politécnico Nacional
  • Rubén Santiago-Adame Universidad Autónoma de Tamaulipas
  • Guadalupe C. Rodríguez-Castillejos Universidad Autónoma de Tamaulipas
  • Maria Del Rayo Camacho-Corona Universidad Autónoma de Nuevo León
  • Pilar Del C. Morales-San Claudio Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.30827/ars.v60i3.9219

Keywords:

Pathogenic bacteria, Beauveria bassiana, Antimicrobial

Abstract

Objective: The antimicrobial activity of a crude extract of B. bassiana and two fractions thereof against clinically important bacteria was evaluated.

Methods: The mycelium of strain B. bassiana was soaked in methanol for a week, then it was evaporated in a rotovap at 45 ° C applying a vacuum. The methanolic extract was passed through two mobile phases to obtain a fraction A and B. Fractions A, B and crude extract C were evaluated against the strains Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella tiphy, Pseudomonas aeruginosa and Acinetobacter baumannii with the plate microdilution technique.

Results: In fraction A an antimicrobial effect against Salmonella typhi, Pseudomonas aeruginosa and Acinetobacter baumannii was observed, bacterial growth reached 70, 60 and 83% respectively. Fraction B caused an antimicrobial effect in Klebsiella pneumoniae, S. typhi, P. aeruginosa and A. baumannii with a bacterial growth of 62, 58, 41 and 7% respectively. And the crude extract did not cause growth inhibition in A. baumannii, but for the rest of the bacteria there was a growth of 56 to 88%.

Conclusions: Beauveria bassiana is an entomopathogenic fungus that produces different metabolites with insecticidal, cytotoxic, antifungal, antibiotic and antiviral activity. This is the first study of the antimicrobial effects of a methanolic extract of the entomopathogenic fungus B. bassiana against bacterial strains of clinical importance.

Downloads

Download data is not yet available.

Author Biography

Jesús Manuel Villegas-Mendoza, Instituto Politecnico Nacional

Biotecnología

References

Meyer, V. Genetic engineering of filamentous fungi-Progress, obstacles and future trends. Biotechnology Adavence. 2007. 26, 177-185. DOI: 10.1016/j.biotechadv.2007.12.001.

Skellam, E. Strategies for engineering natural product biosynthesis in fungi. Trends in Biotecnology. 2018. 1704, 112. DOI:10.1016/j.tibtech.2018.09.003.

Fox, E. M. & Howlett, B. J. Secondary metabolism: regulation and role in fungal biology. Current Opinion in Microbiology. 2008. 11, 481-487. DOI: 10.1016/j.mib.2008.10.007.

Deng, H. Gao, R. & Cai, Y. RISPR system in filamentous fungi: Current achievements and future directions. Gene. 2017. 627, 212-221. DOI: 10.1016/j.gene.2017.06.019.

Dhawan, M. & Joshi, N. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae. Brazilian Journal of Microbiology. 2017. 48, 522-529. DOI: 10.1016/j.bjm.2016.08.004.

Rondot, Y. & Reineke, A. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biological Control. 2016.1-8. DOI: 10.1016/j.biocontrol.2016.10.006.

Quesada-Moraga, E. & Vey, A. Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycological Research. 2004. 108(4), 441-452. DOI: 10.1017/S0953756204009724

Molnar, I. Gibson, D. M. & Krasnoff, S. B. Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Product Reports. 2010. 27, 1241-1275. DOI: 10.1039/c001459c.

Ozgor, E. Sevim, H. Gurpinar, O. A. & Keskin, N. Cytotoxic effect og fungal-sourced bassiatin on breast cancer cell lines. Journal of Biotechnology. 2017. 256,17-43.

Jeffs, LL. B. & Khachatourians, G. Toxic properties of Beauveria pigments on erythrocytes membranes. Toxicon. 1997. 35(8), 1351-1356. DOI: 10.1016/S0041-0101(97)00025-1.

Love, B. E. Bonner-Stewart, J. Forrest, L. A. An efficient synthesis of oosperein. Tetrahedron Letters. 2009. 50, 5050-5052. DOI: 10.1016/j.tetlet.2009.06.103.

Favilla, M. M. Gallo, A. & Altomare, C. Toxicity assessment of metabolites of fungal biocontrol agents using two diffent (Artemia salina and Daphina magna) invertebrade bioassays. Food and Chemical Toxicology. 2006. 44, 1922-1931. DOI: 10.1016/j.fct.2006.06.024.

Kouvelis, V. N., C. Wang, A. Skrobek, K. M. Pappas, M. A. Typas, and T.M. Butt. Assessing the cytotoxic and mutagenic effects of secondary metabolites produced by several fungal biological control agents with the Ames assay and the VITOTOX test. Mutat. Res.2011. 722: 1-6. DOI: 10.1016/j.mrgentox.2011.01.004.

Elsworth, J. F. & Grove, J. F. Cyclodepsipeptides from Beauveria bassiana Bals. Part 1. Beauverolides H and I. South Africa Journal of Science. 1970. 70, 270-272. DOI: 10.1039/P19770000270.

Hegedus, D. D. & Khachatourians, G. G. The impact of Biotechnology on hyphomycetous fungal insect biocontrol agents. Biotechnology Advances. 1995. 13, 455-490. DOI:10.1016/0734-9750(95)02006-O.

Vilcinskas, A. Jegorov, A. Landa, Z. Gotz, P. & Matha, V. Effects of beauverolide L and Cyclosporin A on humoral and cellular immune reponse of the greater waax moth, Galleria mellonella. Comparative Biochemistry and Physiology. 1999. 122, 83-92. DOI: 10.1016/S0742-8413(98)10082-8.

Kuzma, M. Jegerov, A. Kacer, O. & Havlicek, V. Sequencing of new beauverilodes bu high-performance liquid chromatrography and mass spectrometry. Journal of Mass Spectrometry. 2001. 36, 1108-1115. DOI: 10.1002/jms.213.

Roberts, D. W. Gupta, S. & Leger, R. J. ST. Metabolite production by entompathogenic fungi. Pesquisa Agropecuária Brasileira. 1992. 27, 325-347.

Ganassi, S. Moretti, A. & Pagliai, A. M. B. Effects of beauvericin on Schizaphis graminum (Aphidedae). Journal of Invertebrate Pathology. 2002. 80, 90-96. DOI: 10.1016/S0022-2011(02)00125-8.

Luz, C. Saladino, F. Luciano, F. B. Mañes, J. & Meca, G. Occurrence, toxicology, bioaccessibility and mitigation strategias of beauvericin, a minor Fusarium mycotoxin. Food and Chemical Toxicology. 2017. 107, 430-439. DOI: 10.1016/j.fct.2017.07.032.

Cox, R. J. & Ohagan, D. Synthesis of Isotopocally labelled 3-Amino-2-phenylpropionic acid its role as a precursor in the biosynthesis of tenellin and tropic acid. Journal of the Chemical Society, Perkin. 1991. 2537-2540. DOI: 10.1039/P19910002537.

Vega, F. E. Meyling, N. V. Luangsa-ard. & Blackwell, M. Fungal Entomopathogens. Iinsect Pathology. 2012. 171-206. DOI: 10.1016/j.jip.2008.01.008.

Liu, X. Xiang, M. & Che, Y. The living strategy of nematophagous fungi. Mycoscience. 2009. 50, 20-25. DOI: 10.1007/S10267-008-0451-3.

Vilcinskas, A., P. Kopacek, A. Jegorov, A. Vey, and V. Matha. Detection of lipophorin as the major cyclosporin-binding protein in the hemolymph of the greater wax moth Galleria mellonella. Comp. Biochem. Physiol. 1997. 117: 41- 45. DOI: 10.1016/S0742-8413(96)00235-6.

Survase, S. A. Kagliwal, L. D. Annapure, U. S. & Singhal, R. S. Cyclosporin A- A review on fermentative production, downstream processing and pharmacological applications. Biotecnhology Adavances. 2011. 29, 418-435. DOI: 10.1016/j.biotechadv.2011.03.004.

Makrlik, E., S. Bohm, and P. Vanura. Experimental and DFT study on complexation of the strontium cation with cyclosporine. A. J. Mol. Struct. 2015. 1100: 184-187. DOI: 10.1016/j.molstruc.2015.06.086.

Gindin, G. Barash, I. Harari, N. & Raccah, B. Effect of endotoxic compounds isolated from Verticillium lecanii in the sweerpotato whitefly, Bemisia Tabaci. Phytoparasitica. 1994. 22(3): 189-196. DOI: 10.1007/BF02980318.

Xu, Y. Orozco, R. Wijeratne, E. M. K. Espinosa-Artiles, P. Gunatilaka, A. A. L. Stock, S. P. & Molnar I. Biosynthesis og the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology. 2009. 46, 353-364. DOI: 10.1016/j.fgb.2009.03.001

Mun, B. Park, Y. J. Sung, G. H. Lee, Y. & Kim K. H. Synthesis and antitumor activity of (-) - Bassianolide in MDA-MB 231 breast cancer cells through cell cycle arrest. Bioorganic Chemistry. 2016. 69, 64-70. DOI: 10.1016/j.bioorg.2016.09.008

Bilal, M. Rasheed, T. Iqbal, H. M. N. Hu, H. Wang, W. & Zhang, X. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. International Journal of Biological Macromolecules. 2017.103, 554-574. DOI: 10.1016/j.ijbiomac.2017.05.071

Devi, S. I. Lotjem, H. Devi, E. J. Potshangbam, M. Nhashangva, Ng. Bora, J. Sahoo, D. & Sharma C. Bio-mining the forest ecosytem of north east India for identification if antimicrobial metabolites from fungi through submerged fermentation. Bioresource Technology. 2017. 241, 1168-1172. DOI: 10.1016/j.biortech.2017.05.130.

Lima, M. T. N. S. Dos Santos, L. S. Bastos, R. W. Nicoli, J. R. & Takahashi J. A. Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi. Brazilian Journal of Microbiology. 2018. 49, 169-176. DOI: 10.1016/j.bjm.2017.06.004.

Yogabaanu, U. Faizal Weber, J. F. Convey, P. Rizman-Idid, M y Alias, S. A. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi. Polar Science. 2017. 14: 60-67. DOI: /10.1016/j.polar.2017.09.005 1873-96.

Yang, M. H. Li, T. X. Wang, Y. Liu, R. H. Luo, J. & Kong, L. Y. Antimicrobial metabolites from the plant endophytic fungus Penicillium sp. Fitoterapia. 2017. 116, 72-76. DOI: 10.1016/j.fitote.2016.11.008.

Khan, N. Afroz, F. Begum, M. N. Rony, R. S. Sharmin, S. Moni, F. Hasan, C. M. Shaha, K. & Sohrab Md. H. Endophytic fusarium solani: A rich source of cytotoxic and antimicrobial napthaquinone and aza-anthraquinone derivates. Toxicology Reports. 2018. 5, 970-976.

Zhu, H. Yan, Q. An, Y. Hou, X. Zhang, T. Zhang, M. Wang, C. Xia, M. Ma, X. & Zhang, Y. Alfa-Pyrones, seconday metabolites from fungus Cephalotrichum microsporum and their bioactivities. Bioorganic Chemistry. 2019. 83, 129-134. DOI: 10.1016/j.bioorg.2018.10.022.

Rukachaisirikul, V. Arunpanichlert, J. Sukpondma, Y. Phongpaichit, S. & Sakayaroj, J. Metabolites from the endophytic fungi Botryosphaeria rhodina PSU-M35 and PSU-M114. Tetrahedron. 2009. 65, 10590-10595. DOI: 10.1016/j.tet.2009.10.084

Swathi, J. Sowjanyia, K. M. Narendra, K. Reddy, K. V. N. R. & Satya, A. K. Isolation, identification y production of biactive metabolites from marine fungi collected from coastal area of Andhra Prasdesh, India. Journal of Pharmacy Research. 2013. 6, 663-666. DOI: 10.1016/j.jopr.2013.04.052.

Shin, Y. T. Bae, S. M. & Woo, S. D. Screening and characterization of antimicrobial substances originated from entomopathogenic fungi. Journal of Asia-Pacific Entomology. 2016. 19, 1053-1059. DOI: 10.1016/j.aspen.2016.09.008.

Lozano-Tovar, M. D. Garrido-Jurado, Quesada-Moraga, E. Raya-Ortega. M. C. y Trapero-Casas, A. Metarhizium brunneum and Beauveria bassiana release secondary metabolites with antagonistic activity against Verticillium dahliae and Phytophthora megasperma olive pathogens. Crop Protection. 2017. 100 186-195. DOI: 10.1016/j.cropro.2017.06.026.

Strasser H., Abendstein D., Stuppner H., y Butt T. M. Monitoring the distribution of secondar and metabolites produced by the entomogenous fungus Beauveria bassiana with particular reference to oosporein. Mycological Research. 2000. 104: 1227-1233. DOI: 10.1017/S0953756200002963.

Published

2019-09-20

How to Cite

1.
Villegas-Mendoza JM, Rosas-García NM, Mireles-Martínez M, Santiago-Adame R, Rodríguez-Castillejos GC, Camacho-Corona MDR, Morales-San Claudio PDC. Antimicrobial evaluation of a methanol extract of Beauveria bassiana against pathogenic bacteria of nosocomial importance. Ars Pharm [Internet]. 2019 Sep. 20 [cited 2025 Jan. 10];60(3):169-76. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/9219

Issue

Section

Original Articles