Antimicrobial evaluation of a methanol extract of Beauveria bassiana<\em> against pathogenic bacteria of nosocomial importance
DOI:
https://doi.org/10.30827/ars.v60i3.9219Keywords:
Pathogenic bacteria, Beauveria bassiana, AntimicrobialAbstract
Objective: The antimicrobial activity of a crude extract of B. bassiana and two fractions thereof against clinically important bacteria was evaluated.
Methods: The mycelium of strain B. bassiana was soaked in methanol for a week, then it was evaporated in a rotovap at 45 ° C applying a vacuum. The methanolic extract was passed through two mobile phases to obtain a fraction A and B. Fractions A, B and crude extract C were evaluated against the strains Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella tiphy, Pseudomonas aeruginosa and Acinetobacter baumannii with the plate microdilution technique.
Results: In fraction A an antimicrobial effect against Salmonella typhi, Pseudomonas aeruginosa and Acinetobacter baumannii was observed, bacterial growth reached 70, 60 and 83% respectively. Fraction B caused an antimicrobial effect in Klebsiella pneumoniae, S. typhi, P. aeruginosa and A. baumannii with a bacterial growth of 62, 58, 41 and 7% respectively. And the crude extract did not cause growth inhibition in A. baumannii, but for the rest of the bacteria there was a growth of 56 to 88%.
Conclusions: Beauveria bassiana is an entomopathogenic fungus that produces different metabolites with insecticidal, cytotoxic, antifungal, antibiotic and antiviral activity. This is the first study of the antimicrobial effects of a methanolic extract of the entomopathogenic fungus B. bassiana against bacterial strains of clinical importance.
Downloads
References
Meyer, V. Genetic engineering of filamentous fungi-Progress, obstacles and future trends. Biotechnology Adavence. 2007. 26, 177-185. DOI: 10.1016/j.biotechadv.2007.12.001.
Skellam, E. Strategies for engineering natural product biosynthesis in fungi. Trends in Biotecnology. 2018. 1704, 112. DOI:10.1016/j.tibtech.2018.09.003.
Fox, E. M. & Howlett, B. J. Secondary metabolism: regulation and role in fungal biology. Current Opinion in Microbiology. 2008. 11, 481-487. DOI: 10.1016/j.mib.2008.10.007.
Deng, H. Gao, R. & Cai, Y. RISPR system in filamentous fungi: Current achievements and future directions. Gene. 2017. 627, 212-221. DOI: 10.1016/j.gene.2017.06.019.
Dhawan, M. & Joshi, N. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae. Brazilian Journal of Microbiology. 2017. 48, 522-529. DOI: 10.1016/j.bjm.2016.08.004.
Rondot, Y. & Reineke, A. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biological Control. 2016.1-8. DOI: 10.1016/j.biocontrol.2016.10.006.
Quesada-Moraga, E. & Vey, A. Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycological Research. 2004. 108(4), 441-452. DOI: 10.1017/S0953756204009724
Molnar, I. Gibson, D. M. & Krasnoff, S. B. Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Product Reports. 2010. 27, 1241-1275. DOI: 10.1039/c001459c.
Ozgor, E. Sevim, H. Gurpinar, O. A. & Keskin, N. Cytotoxic effect og fungal-sourced bassiatin on breast cancer cell lines. Journal of Biotechnology. 2017. 256,17-43.
Jeffs, LL. B. & Khachatourians, G. Toxic properties of Beauveria pigments on erythrocytes membranes. Toxicon. 1997. 35(8), 1351-1356. DOI: 10.1016/S0041-0101(97)00025-1.
Love, B. E. Bonner-Stewart, J. Forrest, L. A. An efficient synthesis of oosperein. Tetrahedron Letters. 2009. 50, 5050-5052. DOI: 10.1016/j.tetlet.2009.06.103.
Favilla, M. M. Gallo, A. & Altomare, C. Toxicity assessment of metabolites of fungal biocontrol agents using two diffent (Artemia salina and Daphina magna) invertebrade bioassays. Food and Chemical Toxicology. 2006. 44, 1922-1931. DOI: 10.1016/j.fct.2006.06.024.
Kouvelis, V. N., C. Wang, A. Skrobek, K. M. Pappas, M. A. Typas, and T.M. Butt. Assessing the cytotoxic and mutagenic effects of secondary metabolites produced by several fungal biological control agents with the Ames assay and the VITOTOX test. Mutat. Res.2011. 722: 1-6. DOI: 10.1016/j.mrgentox.2011.01.004.
Elsworth, J. F. & Grove, J. F. Cyclodepsipeptides from Beauveria bassiana Bals. Part 1. Beauverolides H and I. South Africa Journal of Science. 1970. 70, 270-272. DOI: 10.1039/P19770000270.
Hegedus, D. D. & Khachatourians, G. G. The impact of Biotechnology on hyphomycetous fungal insect biocontrol agents. Biotechnology Advances. 1995. 13, 455-490. DOI:10.1016/0734-9750(95)02006-O.
Vilcinskas, A. Jegorov, A. Landa, Z. Gotz, P. & Matha, V. Effects of beauverolide L and Cyclosporin A on humoral and cellular immune reponse of the greater waax moth, Galleria mellonella. Comparative Biochemistry and Physiology. 1999. 122, 83-92. DOI: 10.1016/S0742-8413(98)10082-8.
Kuzma, M. Jegerov, A. Kacer, O. & Havlicek, V. Sequencing of new beauverilodes bu high-performance liquid chromatrography and mass spectrometry. Journal of Mass Spectrometry. 2001. 36, 1108-1115. DOI: 10.1002/jms.213.
Roberts, D. W. Gupta, S. & Leger, R. J. ST. Metabolite production by entompathogenic fungi. Pesquisa Agropecuária Brasileira. 1992. 27, 325-347.
Ganassi, S. Moretti, A. & Pagliai, A. M. B. Effects of beauvericin on Schizaphis graminum (Aphidedae). Journal of Invertebrate Pathology. 2002. 80, 90-96. DOI: 10.1016/S0022-2011(02)00125-8.
Luz, C. Saladino, F. Luciano, F. B. Mañes, J. & Meca, G. Occurrence, toxicology, bioaccessibility and mitigation strategias of beauvericin, a minor Fusarium mycotoxin. Food and Chemical Toxicology. 2017. 107, 430-439. DOI: 10.1016/j.fct.2017.07.032.
Cox, R. J. & Ohagan, D. Synthesis of Isotopocally labelled 3-Amino-2-phenylpropionic acid its role as a precursor in the biosynthesis of tenellin and tropic acid. Journal of the Chemical Society, Perkin. 1991. 2537-2540. DOI: 10.1039/P19910002537.
Vega, F. E. Meyling, N. V. Luangsa-ard. & Blackwell, M. Fungal Entomopathogens. Iinsect Pathology. 2012. 171-206. DOI: 10.1016/j.jip.2008.01.008.
Liu, X. Xiang, M. & Che, Y. The living strategy of nematophagous fungi. Mycoscience. 2009. 50, 20-25. DOI: 10.1007/S10267-008-0451-3.
Vilcinskas, A., P. Kopacek, A. Jegorov, A. Vey, and V. Matha. Detection of lipophorin as the major cyclosporin-binding protein in the hemolymph of the greater wax moth Galleria mellonella. Comp. Biochem. Physiol. 1997. 117: 41- 45. DOI: 10.1016/S0742-8413(96)00235-6.
Survase, S. A. Kagliwal, L. D. Annapure, U. S. & Singhal, R. S. Cyclosporin A- A review on fermentative production, downstream processing and pharmacological applications. Biotecnhology Adavances. 2011. 29, 418-435. DOI: 10.1016/j.biotechadv.2011.03.004.
Makrlik, E., S. Bohm, and P. Vanura. Experimental and DFT study on complexation of the strontium cation with cyclosporine. A. J. Mol. Struct. 2015. 1100: 184-187. DOI: 10.1016/j.molstruc.2015.06.086.
Gindin, G. Barash, I. Harari, N. & Raccah, B. Effect of endotoxic compounds isolated from Verticillium lecanii in the sweerpotato whitefly, Bemisia Tabaci. Phytoparasitica. 1994. 22(3): 189-196. DOI: 10.1007/BF02980318.
Xu, Y. Orozco, R. Wijeratne, E. M. K. Espinosa-Artiles, P. Gunatilaka, A. A. L. Stock, S. P. & Molnar I. Biosynthesis og the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology. 2009. 46, 353-364. DOI: 10.1016/j.fgb.2009.03.001
Mun, B. Park, Y. J. Sung, G. H. Lee, Y. & Kim K. H. Synthesis and antitumor activity of (-) - Bassianolide in MDA-MB 231 breast cancer cells through cell cycle arrest. Bioorganic Chemistry. 2016. 69, 64-70. DOI: 10.1016/j.bioorg.2016.09.008
Bilal, M. Rasheed, T. Iqbal, H. M. N. Hu, H. Wang, W. & Zhang, X. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. International Journal of Biological Macromolecules. 2017.103, 554-574. DOI: 10.1016/j.ijbiomac.2017.05.071
Devi, S. I. Lotjem, H. Devi, E. J. Potshangbam, M. Nhashangva, Ng. Bora, J. Sahoo, D. & Sharma C. Bio-mining the forest ecosytem of north east India for identification if antimicrobial metabolites from fungi through submerged fermentation. Bioresource Technology. 2017. 241, 1168-1172. DOI: 10.1016/j.biortech.2017.05.130.
Lima, M. T. N. S. Dos Santos, L. S. Bastos, R. W. Nicoli, J. R. & Takahashi J. A. Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi. Brazilian Journal of Microbiology. 2018. 49, 169-176. DOI: 10.1016/j.bjm.2017.06.004.
Yogabaanu, U. Faizal Weber, J. F. Convey, P. Rizman-Idid, M y Alias, S. A. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi. Polar Science. 2017. 14: 60-67. DOI: /10.1016/j.polar.2017.09.005 1873-96.
Yang, M. H. Li, T. X. Wang, Y. Liu, R. H. Luo, J. & Kong, L. Y. Antimicrobial metabolites from the plant endophytic fungus Penicillium sp. Fitoterapia. 2017. 116, 72-76. DOI: 10.1016/j.fitote.2016.11.008.
Khan, N. Afroz, F. Begum, M. N. Rony, R. S. Sharmin, S. Moni, F. Hasan, C. M. Shaha, K. & Sohrab Md. H. Endophytic fusarium solani: A rich source of cytotoxic and antimicrobial napthaquinone and aza-anthraquinone derivates. Toxicology Reports. 2018. 5, 970-976.
Zhu, H. Yan, Q. An, Y. Hou, X. Zhang, T. Zhang, M. Wang, C. Xia, M. Ma, X. & Zhang, Y. Alfa-Pyrones, seconday metabolites from fungus Cephalotrichum microsporum and their bioactivities. Bioorganic Chemistry. 2019. 83, 129-134. DOI: 10.1016/j.bioorg.2018.10.022.
Rukachaisirikul, V. Arunpanichlert, J. Sukpondma, Y. Phongpaichit, S. & Sakayaroj, J. Metabolites from the endophytic fungi Botryosphaeria rhodina PSU-M35 and PSU-M114. Tetrahedron. 2009. 65, 10590-10595. DOI: 10.1016/j.tet.2009.10.084
Swathi, J. Sowjanyia, K. M. Narendra, K. Reddy, K. V. N. R. & Satya, A. K. Isolation, identification y production of biactive metabolites from marine fungi collected from coastal area of Andhra Prasdesh, India. Journal of Pharmacy Research. 2013. 6, 663-666. DOI: 10.1016/j.jopr.2013.04.052.
Shin, Y. T. Bae, S. M. & Woo, S. D. Screening and characterization of antimicrobial substances originated from entomopathogenic fungi. Journal of Asia-Pacific Entomology. 2016. 19, 1053-1059. DOI: 10.1016/j.aspen.2016.09.008.
Lozano-Tovar, M. D. Garrido-Jurado, Quesada-Moraga, E. Raya-Ortega. M. C. y Trapero-Casas, A. Metarhizium brunneum and Beauveria bassiana release secondary metabolites with antagonistic activity against Verticillium dahliae and Phytophthora megasperma olive pathogens. Crop Protection. 2017. 100 186-195. DOI: 10.1016/j.cropro.2017.06.026.
Strasser H., Abendstein D., Stuppner H., y Butt T. M. Monitoring the distribution of secondar and metabolites produced by the entomogenous fungus Beauveria bassiana with particular reference to oosporein. Mycological Research. 2000. 104: 1227-1233. DOI: 10.1017/S0953756200002963.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Jesús Manuel Villegas-Mendoza, Ninfa M. Rosas-García, Maribel Mireles-Martínez, Rubén Santiago-Adame, Guadalupe C. Rodríguez-Castillejos, Maria Del Rayo Camacho-Corona, Pilar Del C. Morales-San Claudio
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The articles, which are published in this journal, are subject to the following terms in relation to the rights of patrimonial or exploitation:
- The authors will keep their copyright and guarantee to the journal the right of first publication of their work, which will be distributed with a Creative Commons BY-NC-SA 4.0 license that allows third parties to reuse the work whenever its author, quote the original source and do not make commercial use of it.
b. The authors may adopt other non-exclusive licensing agreements for the distribution of the published version of the work (e.g., deposit it in an institutional telematic file or publish it in a monographic volume) provided that the original source of its publication is indicated.
c. Authors are allowed and advised to disseminate their work through the Internet (e.g. in institutional repositories or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).