Identificación de epítopes T citotóxicos restringidos a la molécula HLA-A2.1 en la proteína HSP70 de T. cruzi.

Authors

  • MC LÓPEZ Instituto de Inmunología, Universidad Nacional de Colombia, Bogotá, Colombia.
  • C MARAÑÓN Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina «López Neyra», CSIC, Calle Ventanilla 11, 18001- Granada, Spain.
  • MC THOMAS Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina «López Neyra», CSIC, Calle Ventanilla 11, 18001- Granada, Spain.
  • F GUZMAN Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina «López Neyra», CSIC, Calle Ventanilla 11, 18001- Granada, Spain.
  • ME PATARROYO Instituto de Inmunología, Universidad Nacional de Colombia, Bogotá, Colombia.

Keywords:

Linfocitos T citotóxicos, HSP70, Trypanosoma cruzi, HLA-A2.1, Ratones transgénicos A2/Kb

Abstract

El análisis de la capacidad de unión a células T2 realizado con 31 péptidos correspondientes a distintas regiones dela proteína HSP70 de Trypanosoma cruzi, muestra que 14 de estos péptidos tienen una alta o media afinidad por lamolécula presentadora A2.1. Interesantemente, el presente manuscrito pone de manifiesto que la inmunización deratones transgénicos A2/Kb con la proteína recombinante HSP70 de T. cruzi induce CTLs que reconocen células EL4-A2/Kb cargadas de forma independiente con tres de los péptidos con afinidad de unión a moléculas A2. Estospéptidos presentan una homología menor del 65% con sus homólogos de la proteína HSP70 humana. Los resultadosobtenidos permiten sugerir la posibilidad de que la HSP70 de T. cruzi pueda ser usada como diana para induciractividad inmune citotóxica en humanos.

Downloads

Download data is not yet available.

References

Marsden PD. American trypanosomiasis. In: Cook GC (ed) Mansin’ s tropical disease. Saunders, London, pp.1197-1212.

de Andrade AL, Zicker F, de Oliveira RM, Almeida Silva S, Luquetti A, Travassos LR, et al. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 1996; 348: 1407-1413.

Tarleton RL. Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J Immunol 1990; 144: 717-724.

Henics T, Nagy E, Oh HJ, Csermely P, von Gabain A, Subjeck JR. Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. J Biol Chem 1999; 24: 17318-17324.

Tascón RE, Colston MJ, Ragno S, Stavropoulos E, Gregory D, Lowrie DB. Vaccination against tuberculosis by DNA injection. Nature Medicine 1996; 2: 888-892.

Salvetti M, Ristori G, Buttinelli C, Fiori P, Falcone M, Britton W, et al. The immune response to mycobacterial 70-KDa heat shock proteins frequently involves autoreactive T cells and is quantitatively disregulated in multiple sclerosis. J Neuroimmunol 1996; 65: 143-153.

Breloer M, Fleischer B, von Vonin A. In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J Immunol 1999; 162: 3141-3147.

Suzue K, Zhou X, Eisen HN, Young RA. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci USA. 1997; 94: 13146-13151.

Engman DM, Dragin EA, Donelson JE. Human humoral immunity to hsp70 during Trypanosoma cruzi infection. J Immunol 1990; 144: 3987-3991.

Requena JM, Soto M, Guzman F, Maekelt A, Noya O, Patarroyo ME et al. Mapping of antigenic determinants of the T. cruzi hsp70 in chagasic and healthy individuals. Mol Immunol 1993; 30(12): 1115-1121.

Marañón C, Planelles L, Alonso C, López MC. HSP70 from Trypanosoma cruzi is endowed with specific cell proliferation potential leading to apoptosis. Int Immunol 2000; 12: 1685-1693.

Requena JM, Jiménez A, Soto M, Assiego R, Santaren JF, López, MC et al. Regulation of HSP70 expression in Trypanosoma cruzi by temperature and growth phase. Mol Biochem Parasitol 1992; 53: 201-212.

Rammensee HG, Friede T, Stevanovic S. MHC ligands and peptide motifs: First listing. Immunogenetics 1995; 41:178-228.

Sarin VK, Tam JP, Merrifield RB. Quantitative monitoring of solid phase peptide system by the ninhydrin reaction. Ann Biochem 1981; 117: 147-157.

Houghten RA. General method for the rapid solid phase synthesis of large numbers of peptides: Specificity of antigen antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 1985; 82: 5131-5135.

Puentes F, Guzmán F, Marín V, Alonso C, Patarroyo ME, Moreno A. Leishmania: Fine mapping of the leishmanolysin molecule’ s conserved core domains involved in binding and internalization. Exp Parasitol 1999; 93: 7-22.

Zweerink HJ, Gammon MC, Utz U, Sauma SY, Harrer T, Hawkins JC, et al. Presentation of endogenous peptides to MHC class I-restricted cytotoxic T lymphocytes in transport deletion mutant T2 cells”. J Immunol 1993; 150: 1763-1771.

Pogue RR, Eron J, Frelinger JA, Matsui M. Amino-terminal alteration of the HLA-A*0201-restricted human immunodeficiency virus pol peptide increases complex stability and in vitro immunogenicity. Proc Natl Acad Sci USA 1995; 92: 8166-8170.

Vitiello A, Marchersini D, Furze J, Sherman LA, Chesnut RW. Analysis of the HLA-restricted influenza-specific cytotoxic response in transgenic mice carrying a chimeric human-murine class I major histocompatibility complex. J Exp Med 1991; 173(4): 1007-1015.

Men Y, Miconnet I, Valmori D, Rimoldi D, Cerottini JC, Romero P. Assessment of immunogenicity of human Melan-A peptide analogues in HLA-A*0201/Kb transgenic mice. J Immunol 1999; 162: 3566-3573.

Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WM, et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 1994; 153(2): 5586-5592.

Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade K. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 1998; 8: 657-665.

Schild H, Arnold-Schild D, Lammert E, Rammensee HG. Stress proteins and immunity mediated by cytotoxic T lymphocytes. Curr Opin Immunol 1999; 11(1): 109-113.

Anthony LSD, Wu H, Sweet H, Turnnir C, Boux LJ, Mizzen LA. Priming of CD8+ CTL effector cells in mice by immunization with a stress protein-influenza virus nucleoprotein fusion molecule. Vaccine 1999; 17: 373-383.

Kumar S, Tarleton RL. The relative contribution of antibody production and CD8+ T cell function to immune control of Trypanosoma cruzi. Parasite Immunol 1998; 20: 207-216.

Wentworth PA, Vitiello A, Sidney J, Keogh E, Chesnut RW, Grey H, et al. Differences and similarities in the A2.1-restricted cytotoxic T cell repertoire in humans and human leukocyte antigen-transgenic mice. Eur J Immunol 1996; 26: 97-101.

Krausa P, Brywka M3rd, Savage D, Hui KM, Bunce M, Ngai JLF, et al. Genetic polymorphism within HLA-A*02: significant allelic variation revealed in different populations. Tissue Antigens 1995; 45: 223-231.

Nickell SP, Stryker G, Arevalo C. Isolation from Trypanosoma cruzi-infected mice of CD8+, MHC-restricted cytotoxic T cells that lyse parasite-infected target cells. J Immunol 1993; 150: 1446-1457.

Low HP, Santos MAM, Wizel B, Tarleton RL. Amastigote surface proteins of Trypanosoma cruzi are targets for CD8+CTL. J Immunol 1998; 160: 1817-1823.

Published

2000-12-20

How to Cite

1.
LÓPEZ M, MARAÑÓN C, THOMAS M, GUZMAN F, PATARROYO M. Identificación de epítopes T citotóxicos restringidos a la molécula HLA-A2.1 en la proteína HSP70 de T. cruzi. Ars Pharm [Internet]. 2000 Dec. 20 [cited 2024 Jul. 22];42(1-2):67-80. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/5708

Issue

Section

Original Articles