Energetic characterization of 1,3,6-naphtalene trisulfonate binding to human acidic fi broblast growth factor: implications for its anti-angiogenic use

Authors

  • M GARCÍA-MIRA Departamento de Química-Física e Instituto de Biotecnología, Facultad de Ciencias
  • M GUZMÁN-CASADO Departamento de Química-Física e Instituto de Biotecnología, Facultad de Ciencias
  • G GIMÉNEZ-GALLEGO Centro de Investigaciones Biológicas (CSIC), Madrid
  • A PARODY-MORREALE Departamento de Química-Física e Instituto de Biotecnología, Facultad de Ciencias

Keywords:

1, 3, 6-naphatalene trisulfonate, Human acidic fibroblast growth factor, Isothermal titration calorimetry, Anti-angiogenesis, Energetically driven drug design

Abstract

The equilibrium interaction of anti-cancer agent 1,3,6-naphatalene trisulfonate with human acidic fi broblast growthfactor has been studied by calorimetry. The affi nity decreases with increasing ionic strength. At pH 7.0 and 0.15 MNaCl concentration, a binding constant of the protein with the ligand was estimated in the 102 – 103 M-1 range, anaffi nity two orders of magnitude lower than that of aFGF with heparin. The interaction is enthalpically driven, andthe entropy change is unfavorable. A small heat capacity change with an unusual positive value of 90 cal K-1mol-1 wasdetermined from the temperature dependence of the enthalpies. Changes in accessible apolar and polar surface areasin the interaction were calculated from the thermodynamic data obtained and parametric equations in the literature.The results were compared with those measured from NMR data. The study includes structural bioenergetic considerationsabout the possible use of 1,3,6-naphatalene trisulfonate as an anti-angiogenic agent itself, or as a lead for thedevelopment of anti-angiogenic drugs.

Downloads

Download data is not yet available.

References

Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 2000;277(2):494-8.

Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001;2(3):3005.1-3005.12.

Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285(21):1182-6.

Lozano RM, Jimenez M, Santoro J, Rico M, Gimenez-Gallego G. Solution structure of acidic fibroblast growth factor bound to 1,3, 6-naphthalenetrisulfonate: a minimal model for the anti-tumoral action of suramins and suradistas. J Mol Biol 1998;281(5):899-915.

Cuevas P, Carceller F, Reimers D, Cuevas B, Lozano RM, Gimenez-Gallego G. Inhibition of intra-tumoral angiogenesis and glioma growth by the fibroblast growth factor inhibitor 1,3,6-naphthalenetrisulfonate. Neurol Res 1999;21(5):481-7.

Cuevas P, Lozano RM, Gimenez-Gallego G. Suppression of acidic fibroblast growth factor-dependent angiogenesis by the antigrowth activity of 1,3,6-naphthalenetrisulfonate. Neurol Res 1999;21(2):191-4.

Pineda-Lucena A, Jimenez MA, Nieto JL, Santoro J, Rico M, Gimenez-Gallego G. 1H-NMR assignment and solution structure of human acidic fibroblast growth factor activated by inositol hexasulfate. J Mol Biol 1994;242(1):81-98.

Velazquez-Campoy A, Luque I, Freire EU-hwscsaBT-HB-Febdbc. The application of thermodynamic methods in drug design. Thermochimica Acta 2001;380(2):217-227.

Ortega S, Garcia JL, Zazo M, Varela J, Munoz-Willery I, Cuevas P, et al. Single-step purification on DEAE-sephacel of recombinant polypeptides produced in Escherichia coli. Biotechnology (N Y) 1992;10(7):795-8.

Guzman-Casado M, Sanchez-Ruiz JM, El Harrous M, Gimenez-Gallego G, Parody-Morreale A. Energetics of myoinositol

hexasulfate binding to human acidic fibroblast growth factor effect of ionic strength and temperature. Eur J Biochem 2000;267(12):3477-86.

Zazo M, Lozano RM, Ortega S, Varela J, Diaz-Orejas R, Ramirez JM, et al. High-level synthesis in Escherichia coli of shortened and full-length human acidic fibroblast growth factor and purification in a form stable in aqueous solutions. Gene 1992;113(2):231-8.

Copeland RA, Ji H, Halfpenny AJ, Williams RW, Thompson KC, Herber WK, et al. The structure of human acidic fibroblast growth factor and its interaction with heparin. Arch Biochem Biophys 1991;289(1):53-61.

Wiseman T, Williston S, Brandts JF, Lin LN. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 1989;179(1):131-7.

Shrake A, Rupley JA. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol 1973;79(2):351-71.

Guzman-Casado M, Garcia-Mira MM, Sanchez-Ruiz JM, Gimenez-Gallego G, Parody-Morreale A. Energetics of heparin binding to human acidic fibroblast growth factor. Int J Biol Macromol 2002;31(1-3):45-54.

Spolar RS, Livingstone JR, Record MT, Jr. Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry 1992;31(16):3947-55.

Murphy KP, Bhakuni V, Xie D, Freire E. Molecular basis of co-operativity in protein folding. III. Structural identification of cooperative folding units and folding intermediates. J Mol Biol 1992;227(1):293-306.

Makhatadze GI, Privalov PL. Energetics of protein structure. Adv Protein Chem 1995;47:307-425.

Gomez J, Hilser VJ, Xie D, Freire E. The heat capacity of proteins. Proteins 1995;22(4):404-12.

Hilser VJ, Gomez J, Freire E. The enthalpy change in protein folding and binding: refinement of parameters for structure-based calculations. Proteins 1996;26(2):123-33.

Pineda-Lucena A, Jimenez MA, Lozano RM, Nieto JL, Santoro J, Rico M, et al. Three-dimensional structure of acidic fibroblast growth factor in solution: effects of binding to a heparin functional analog. J Mol Biol 1996;264(1):162-78.

Luque I, Freire E. Structure-based prediction of binding affinities and molecular design of peptide ligands. Methods Enzymol 1998;295:100-27.

Kauzmann W. Some Factors in the Interpretation of Protein Denaturation. Advances in Protein Chemistry 1959;14:1-63.

Fernandez-Tornero C, Lozano RM, Redondo-Horcajo M, Gomez AM, Lopez JC, Quesada E, et al. Leads for development of new naphthalenesulfonate derivatives with enhanced antiangiogenic activity: crystal structure of acidic fibroblast growth factor in complex with 5-amino-2-naphthalene sulfonate. J Biol Chem 2003;278(24):21774-81.

Published

2006-09-20

How to Cite

1.
GARCÍA-MIRA M, GUZMÁN-CASADO M, GIMÉNEZ-GALLEGO G, PARODY-MORREALE A. Energetic characterization of 1,3,6-naphtalene trisulfonate binding to human acidic fi broblast growth factor: implications for its anti-angiogenic use. Ars Pharm [Internet]. 2006 Sep. 20 [cited 2024 May 19];47(3):321-37. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/5036

Issue

Section

Original Articles