Mercury in Waters from South-eastern Spain: Possible Sources of Pollution

Authors

  • C CABRERA-VIQUE Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, E-18012 Granada, España
  • MD RUIZ-LÓPEZ Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, E-18012 Granada, España
  • F JAVIER Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, E-18012 Granada, España

Keywords:

Mercury, Drinking water, Irrigation water, Wastewater, Cold-vapour atomic-absorption spectrometry

Abstract

We determined Hg levels in drinking, irrigation and waste waters from different locations in the province of Granada(South-east Spain). A total of 74 samples were analysed using cold-vapour atomic-absorption spectrometry, and thesensitivity, accuracy and precision of the method were verifi ed. Hg was not detected in drinking water samples but valuesin irrigation water were found to range from undetectable to 0.12 μg/l. Although these values do not give cause forgeneral alarm, some sampling points showed clear evidence of contamination. However, the origins of such could notbe identifi ed with any certainty. In the light of the fact that background Hg levels in soil are in general fairly low, thehigher values recorded seem to be attributable to anthropogenic activity (extensive use of phytosanitory products, urbanand industrial waste,…). Hg levels in wastewater were somewhat higher, ranging from 2.83 to 3.95 μg/l, indicating thatsuch a degree of contamination requires surveillance and periodic controls.

Downloads

Download data is not yet available.

References

Vaidya OC, Howell GD, Leger DA. Evaluation of the distribution of mercury in lakes in Nova Scotia and Newfoundland (Canada), Water Air Soil Poll 2000; 117: 353-369.

Rasmussen PE, Friske PW, Azzaria LM, Garrett RG. Mercury in the Canadian environment: current research challenges, Geoscience Can 1998¸25 (1): 1-13.

Concon JM. 1988, Food toxicology: contaminants and additives’. Marcel Dekker, New York.

Burton DT, Turley SD, Fisher DJ, Green DJ, Shedd TR.. Bioaccumulation of total mercury and monomethylmercury

in the earthworm Eisenia fetida, Water, Air, Soil Pollut. 2006; 170: 37-54.

Rapsomanikis S, Mercury in Harrison RM and Rapsomanikis S (eds.), 1989. Environmental Analysis Using Chromatography

Interfaced with Atomic Spectroscopy, Ellis Horwood, Chichester.

Navarro M, López H, Sanchez M, López MC. The effect of industrial pollution on mercury levels in water, soil and sludge in the coastal area of Motril, Southeast Spain’, Arch. Environ. Contam. Toxicol. 1993; 24(1): 11-15.

Allibone J, Fatemian E, Walker PJ. Determination of mercury in potable water by ICP-MS using gold as a stabilising agent’, J. Anal. At. Spectrom. 1999; 14 (2): 235-239.

Liu HW, Jian SJ and Liu SH. Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry’, Spectrochim. Acta Part B – At Spectrosc 1999; 54(9): 1367-1375.

Saleh MA, Wilson BL. Analysis of metal pollutants in the Houston Ship Channel by inductively coupled plasma-mass spectrometry, Ecotoxicol Environ Safety 1999; 44(1): 113-117.

Mastrine JA, Bonzongo JC, Lyons WB. Mercury concentrations in surface waters from fluvial systems draining historical precious metals mining areas in Southeastern USA. Applied Geochem 1999;14(2): 147-158.

Labatzke T, Schlemmer G. Ultratrace determination of mercury in water following EN and EPA standards using atomic fluorescence spectrometry. Anal Bioanal Chem 2004; 378(4): 1075-1082.

Wang L, Hu QF, Yang GY, Yin JY, Yuan ZB. Determination of lead, cadmium, and mercury by on-line enrichment followed by RP-HPLC. J Anal Chem 2003; 58(11): 1054-1059.

Achterberg EP, Braungardt C. Stripping voltammetry for the determination of trace metal speciation and in-situ measurements

of trace metal distributions in marine waters. Anal Chim Acta 1999; 400: 381-397.

Madrid Y, Cabrera C, Pérez-Corona T, Cámara C. Speciation of methylmercury and Hg(II) using baker’s yeast biomass

(Saccharomyces cerevisiae). Determination by continuous flow mercury cold vapor generation atomic absorption spectrometry. Anal Chem 1995; 67: 750-754.

Harzdorf C, Janser G, Rinne D, Rogge M. Application of microwave digestion to trace organoelement determination in water samples. Anal Chim Acta 1998; 374 (2-3): 209-214.

Tao SQ, Gong SF, Xu L, Fanguy JC. Mercury atomic absorption by mercury atoms in water observed with a liquid core waveguide as a long path absorption cell. Analyst 2004;129(4): 342-346.

Hight SC, Cheng J. Determination of total mercury in seafood by cold vapor-atomic absorption spectroscopy (CVAAS) after microwave decomposition. Food Chem 2005; 91(3): 557-570.

Long GL, Winefordner JD. Limit of detection: a closer look at the IUPAC definition. Anal Chem 1983; 55: 713A.

IUPAC (International Union of Pure and Applied Chemistry).Harmonised guidelines for the use of recovery information in analytical measurement Pure Appl Chem 1999; 71:337-348.

Thompson M, Wood R. Harmonized guidelines for internal quality control in analytical chemistry laboratories. Pure Appl Chem 1995; 67: 49-56.

Cuadros L, Garcia AM, Alés F, Jiménez C, Roman M. Validation of an analytical instrumental method by standard addition methodology’, J. AOAC Int. 1995; 78: 471-476.

Horwitz W, Albert R, Deutsch MJ, Thompson JN., Precision parameters of methods of analysis required for nutrition. J AOAC Int. 1990; 73: 661-680.

Ministerio de la Presidencia: 2003, Real Decreto 140/2003 de 7 de Febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. BOE núm. 45 de 21 de Febrero, Madrid.

CEE. Directiva del Consejo de 3 de noviembre de 1998 relativa a la calidad de las aguas destinadas al consumo humano. DOCE L330 de 5 de diciembre, Bruselas.

FAO-WHO. Sixty-first Meeting on Food Additives. 2003, Joint FAO/WHO Expert Committee on Food Additives. Roma.

Rincón F, Zurera G, Pozo-Lora R. Mercury contamination in Guadalquivir River marshes, Spain, using samarugo, Valencia hispanica, as biological indicador, Bull Environ Contam Toxicol 1986;37: 253-257.

Sierra C, Ortega E, Roca A, Saura I, Asensio C., ‘Proyecto Lucdeme: Mapa de suelos del Padul-1026’, Ministerio de Agricultura, Pesca y Alimentación-Universidad de Granada, 1992. Granada, pp. 174.

Delgado G, Delgado R, Párraga J, Gámiz E, Sánchez M, Martin J.M, Soriano M, García PA, Temsamani R. Proyecto Lucdeme: Mapa de Suelos de la Peza-1010’. Ministerio de Medio Ambiente-Universidad de Granada, 1997. Granada, pp. 88.

Junta de Andalucía.nforme sobre los criterios y estándares para declarar un suelo contaminado en Andalucía: metodología y técnicas de toma de muestras y análisis para su investigación’. Consejería de Medio Ambiente-Junta de Andalucía, 1999. Sevilla.

Junta de Andalucía: Estudio de elementos traza en suelos de Andalucía. Consejería de Medio Ambiente-Junta de Andalucía, 2004, Sevilla.

Adriano DC. Trace elements in terrestrial environments: Biochemistry, bioavailability and risk of metals. 2001Springer,

New York, pp. 865.

Reimann C, Caritat P. Chemical elements in the environment. Springer, 1998. Berlin, pp. 398.

Alloway BJ. Heavy metals in soils. Blackie Academic & Professional. 1995. London, pp. 368.

ITGME (Instituto Tecnológico Geominero de España). Atlas hidrogeológico de la Provincia de Granada. Diputación

Provincial de Granada-ITGME, 1990.Granada.

Cabrera C, Ortega E, Gallego C, López MC, Lorenzo ML, Asensio C. Cadmium concentration in farmlands in southern Spain: possible sources of contamination. Sci Total Environ 1994; 153: 261-265.

Cabrera, C., Ortega, E., Lorenzo, M.L. and López, M.C. Cadmium contamination of vegetable crops, farmlands, and irrigation waters. Rev. Environ Contam Toxicol 1998;154: 55-81.

Avila-Pérez P, Balcázar M, Zarazúa-Ortega G, Barceló-Quintal I, Díaz-Delgado C. Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. Sci Total Environ 1999;234: 185-196.

Loredo J, Álvarez R, Ordóñez A. Release of toxic metals and metalloids from Los Rueldos mercury mine (Asturias, Spain). Sci Total Environ 2005; 340(1-3): 247-260.

Gemici U, Oyman T. The influence of the abandoned Kalecik Hg mine on water and stream sediments (Karaburun, Izmir, Turkey). Sci Total Environ 2003; 312: 155-166.

Horvat M, Covelli S, Faganeli J, Logar M, Mandic V, Rajar R, Sirca A, Zagar D. Mercury in contaminated coastal environments, a case study: the Gulf of Trieste. Sci Total Environ 1999; 237/238: 43-56.

Hope BK, Rubin JR. Mercury levels and relationships in water, sediment, and fish tissue in the Willamette Basin, Oregon. Arch Environ Contam Toxicol 2005; 48(3): 367-380.

Silva-Forsberg MC, Forsberg BR, Zeidemann VK. Mercury contamination in humans linked to river chemistry in the Amazon basin. Ambio 1999; 28(6): 519-521.

Leung CM, Jiao JJ. Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in Mid-Levels area, Hong Kong. Water Res 2006; 40: 753-767.

Jarup L. Hazards of heavy metal contamination. British Med Bull 2003; 68: 167-182.

UK Committee on Toxicity. Cot Statement on Twelve Metals and other Elements in the 2000 UK Total Diet Study. Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment, 2004 London.

Thompson-Roberts ES, Pick FR, Hall GEM. Total Hg in water, sediment, and four species of aquatic macrophytes in the St. Lawrence River, near Cornwall, Ontario. J Great Lakes Res 1999;25(2): 294-304.

Morrison KA, Watras CJ. Mercury and methyl-mercury in freshwater seston: direct determination at picogram per litre

levels by dual filtration. Canadian J Fisheries Aquatic Sci 1999; 56(5): 760-766.

Campbell LM, Hecky RE, Muggide R, Dixon DG, Ramlal PS. Variation and distribution of total mercury in water, sediment and soil from northern lake Victoria, East Africa. Biogeochem 2003; 65(2): 195-211.

Vaidya OC, Howell GD. Interpretation of mercury concentrations in eight headwater lakes in Kejimkujik National Park (Nova Scotia, Canada) by use of a geographic information system and statistical techniques. Water Air Soil Poll 2002:134: 165-188.

Nguyen HL, Leermakers M, Kurunczi S, Bozo L, Baeyens W. Mercury distribution and speciation in lake Balaton, Hungary. Sci Total Environ 2005; 340(1-3): 231-246.

Ayhuan D, Atteng O, Dondokambey A, Randuk M. Mercury pollution on district of Dimembe river system, North Sulawesi, Indonesia, due to traditional gold mining activities. J Physique 2003; 107: 79-82.

Gray JE, Higueras PL, Hines ME, Lasorsa BK. Evaluation of surficial mercury geochemistry in mine waste, sediment, and water at the Almadén mercury mine, Spain’, Annual Meeting of Geological Society of America (GSA) 2003, Seattle (USA).

Feng X, Qiu G, Wang S, Shang L. Distribution and speciation of mercury in surface waters in mercury mining areas in Wanshan, Southwestern China. J Physique 2003; 107: 455-458.

Budambula NLM, Mwachiro EC. Metal status of Nairobi river waters and their bioaccumulation in Labeo Cylindricus. Water Air Soil Pollut 2006; 169: 275-291.

Bonzongo JC, Donkor AK, Nartey VK. Environmental impacts of mercury related to artisanal gold mining in Ghana. J Physique 2003; 107: 217-220.

Dai Q, Feng X, Qiu G, Jiang H. Mercury contaminations from gold mining using amalgamation technique in Xiaoqinling Region, Shanxi Province, PR China. J Physique 2003; 107: 345-348.

Published

2007-04-20

How to Cite

1.
CABRERA-VIQUE C, RUIZ-LÓPEZ M, JAVIER F. Mercury in Waters from South-eastern Spain: Possible Sources of Pollution. Ars Pharm [Internet]. 2007 Apr. 20 [cited 2024 Dec. 22];48(1):37-53. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/4977

Issue

Section

Original Articles