Development and characterization of controlled release mucoadhesive tablets of captopril
Keywords:
Captopril, Gastro-retentive tablet, Mucoadhesive tablets, Swelling IndexAbstract
The present investigation concerns the development of mucoadhesive tablets of Captopril which were designed to prolong the gastric residence time after oral administration. Matrix tablets of Captopril were formulated using different mucoadhesive polymers such as guar gum, xanthan gum, hydroxyl propyl methyl cellulose K4M and K15M in various ratios. The tablets were evaluated for physical properties, content uniformity, swelling index, bioadhesive strength and in-vitro drug release. Swelling was increased as the concentration and viscosity of HPMC increases. Tablets formulated using guar gum and xanthan gum alone were eroded faster and dissolved completely within 5-7 hr, while tablet containing HPMC remain intact and provided slow release up to 11-12 hr. It was evident from the study that the formulation F10 containing HPMC K15M and xanthan gum (1:1) exhibited maximum bioadhesive strength of 31.59±0.05 gm and in vitro drug release was found to be 91.85 % at the end of 12 hr with non-fickian diffusion mechanism. The stability studies of optimized batch showed that there was no change in bioadhesive strength and in-vitro release when stored at different temperature condition for 60 days. It was concluded that formulation F10 shows the better bioadhesive strength and drug release.Downloads
References
Deshpande AA, Rhodes CT, Shah NH, Malick AW. Controlledrelease drug delivery systems for prolonged gastric residence: an overview. Drug Dev Ind Pharm. 1996; 22 (6): 531-539.
Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J Control Rel. 2000; 63(3): 235–259.
Chavanpatil MD, Jain P, Chaudhari S, Shear R, Vavi PR. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. Int J Pharm. 2006; 316(1): 86–92.
Park, K. Robinson, J.R. Bioadhesive polymers as platforms for oral-controlled drug delivery: method to study bioadhesion. Int J Pharm. 1984; 19(2): 107–127.
Machida Y, Masuda H, Fujiyama N, Ito S, Iwata M, Nagai T. Preparation and phase II clinical examination of topical dosage form for treatment of carcinoma colli containing bleomycin with hydroxypropyl cellulose. Chem Pharm Bull. 1979; 27(1): 93–100.
Nagahara N, Akiyama Y, Nakao M, Tada M, Kitano MY. Mucoadhesive microspheres containing amoxicillin for clearance of Helicobacter pylori. Antimicrob Agents Chemother. 1998; 42(10): 2492–2494.
Singh B, Chakkal SK, Ahuja N. Formulation and Optimization of Controlled Release Mucoadhesive Tablets of Atenolol Using Response Surface Methodology. AAPS Pharm Sci Tech. 2006; 7 (1): E19-E28.
Mathiowitz E, Chickering DEI, Lehr CM. Bioadhesive Drug Delivery Systems. Marcel Dekker, New York. 1999.
Robinson JR, Mlynek GM. Bioadhesive and phase-change polymers for ocular drug-delivery. Adv Drug Deliver Rev. 1995; 16(1): 45–50.
Ziyaur Rahman M, Ali RK Khar. Design and evaluation of bilayer floating tablets of captopril. Acta Pharm. 2006; 56:49–57.
Anaizi NH, Swenson C. Instability of captopril solution. Am J Hosp Pharm. 1993; 50: 486–488.
Seta Y, Kawahara Y, Nishimura K, Okada R. Design and preparation of captopril sustained release dosage forms and their biopharmaceutical properties. Int J Pharm. 1988; 41(3): 245–254.
Nafee NA, Ismail FA, Nabila AB, Mortada LM. Mucoadhesive Delivery Systems. II. Formulation and In-Vitro/In-Vivo Evaluation of Buccal Mucoadhesive Tablets Containing Water-Soluble Drugs. Drug Dev Ind Pharm. 2004; 30 (9): 995–1004.
Chowdary KPR. Suresh B, Sangeeta B, Reddy GK. Design and Evaluation of Diltiazem Mucoadhesive Tablets for Oral Controlled Release. Saudi Pharm J. 2003; 11(4): 201-205.
Lachman L, Lieberman HA, Kanig JL. The theory and practice of industrial pharmacy. 3rd Ed. Varghese publishing house: Mumbai, 1987; 293-345.
Baumgartner S, Kristel J, Vreer F, Vodopivec P, Zorko B. Optimization of floating matrix tablets and evaluation of their gastric residence time. Int J Pharm. 2000; 195(1-2): 125-135.
Singh B, Ahuja N. Development of controlled-release buccoadhesive hydrophilic matrices of diltiazem hydrochloride: optimization of bioadhesion, dissolution, and diffusion parameters. Drug Dev Ind Pharm. 2002; 28(4): 431-442.
Duchene D, Touchard F, Peppas N. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Dev Ind Pharm. 1988; 14(2): 283–318.
Lueßen HL, Lehr CM, Rentel CO, Noach AB, de Boer JAG, Verhoef JC, Junginger HE. Bioadhesive polymers for the peroral delivery of peptide drugs. J Control Rel. 1994; 29: 329–338.
Wang, J.,Tabata,Y., Bi, D., Morimoto, K., Evaluation of gastric mucoadhesive properties of aminated gelatin microspheres. J. Control. Rel. 2001; 73: 223–231.
Xu G, Sunada H. Influence of formulation change on drug release kinetics from HPMC matrix tablet. Chem Pharm Bull. 1995; 43(3): 538-550.
Bamba M, Puisieusx F. Release mechanism in gel forming sustained release preparations. Int J Pharm. 1979;2(5-6):307-315
Downloads
Published
How to Cite
Issue
Section
License
The articles, which are published in this journal, are subject to the following terms in relation to the rights of patrimonial or exploitation:
- The authors will keep their copyright and guarantee to the journal the right of first publication of their work, which will be distributed with a Creative Commons BY-NC-SA 4.0 license that allows third parties to reuse the work whenever its author, quote the original source and do not make commercial use of it.
b. The authors may adopt other non-exclusive licensing agreements for the distribution of the published version of the work (e.g., deposit it in an institutional telematic file or publish it in a monographic volume) provided that the original source of its publication is indicated.
c. Authors are allowed and advised to disseminate their work through the Internet (e.g. in institutional repositories or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).