Quantitative determination of amino acids in earthworm meal (Eisenia andrei) by a Surveyor HPLC system in conjunction with pre-column 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization.

Authors

  • José Fernando Ovalles Departamento de Ciencias de los Alimentos, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida (Venezuela).
  • Ana Luisa Medina Departamento de Ciencias de los Alimentos, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida (Venezuela).
  • Elil Márquez Departamento de Ciencias de los Alimentos, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida (Venezuela).
  • Julie Rochette Programa de Cooperación Postgraduados, Franco-Venezolano, Universidad de Montpellier, Montpelier (Francia).
  • José Rafael Luna Departamento de Toxicología, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida (Venezuela).
  • Marielba Morillo Departamento de Ciencias de los Alimentos, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida (Venezuela).

Keywords:

6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, AQC, earthworm meal, HPLC

Abstract

Aim: The objective of this study was to evaluate the integration of the AccQ•Tag derivatization system with the Finnigan Surveyor Plus HPLC system to determine the amino acids (aa) composition of earthworm meal protein post-hydrolysis.

Materials and Methods: In lab cultivated earthworms (Eisenia andrei) were reduced to flour which was then hydrolyzed with 6M HCl at 110 °C for 24 hours in a closed system. The hydrolysis product was neutralized and their aa were derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC). The derivatized-aa were separated by RP-HPLC and detected by fluorescence.

Results and Conclusion: The proposed integration makes optimal use of both the modular design of the Surveyor Plus HPLC for versatility and flexibility and the main features of the AccQ•Tag derivatization system in terms of stability and reproducibility. Analytical validation parameters were studied both before and after derivatization with AQC. The resulting data were within acceptable ranges for this type of analysis. Pre-column derivatization with AQC yielded appropriate sensitivities within the low pmol range per injection. Earthworm meal generated the following aa; the most abundant (w/w) being: Glu, Asp, Arg, Leu, and Lys (4 % - 10 %), whereas the lowest content corresponded to Met (< 1. 5%), which is comparable to fishmeal. The analytical proposal can be used with confidence in earthworm meal quality control to guarantee the appropriate aa content to create an optimum fish diet.

Downloads

Download data is not yet available.

References

Craig S, Helfrich LA. Understanding fish nutrition, feeds, and feeding [Internet]. Virginia State University, Virginia Tech. Publication 420-256: Petersburg; [updated may 1, 2009; accessed february 24, 2014]. Available at: http://pubs.ext.vt.edu/420/420-256/420-256.html.

Croxford B, Dynes RA, Yan G, Sedgley R. Earthworms. Technology information to enable the development of earthworm production. Nº 3-85 RIRDC publication. Australia: Rural industries research and development corporation publication; 2003. 33 p.

Sinha RK, Valani D, Chauhan K, Agarwal S. Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: Reviving the dreams of Sir Charles Darwin. J Agr Biotechnol Sustain Dev. 2010; 2(7): 113-128.

Vielma Rondón R, Ovalles Durán JF, León Leal A, Medina A. Valor nutritivo de la harina de lombriz (Eisenia foetida) como fuente de aminoácidos y su estimación cuantitativa mediante cromatografía en fase reversa (HPLC) y derivatización precolumna con o-ftalaldehído (OPA). Ars Pharm. 2003; 44(1): 43-58.

Nollet LML. Food Analysis by HPLC. 2nd ed. New York: Marcel Dekker; 2000. 1068 p.

Dedeke GA, Owa SO, Olurin KB. Amino acid profile of four earthworms species from Nigeria. Agric Biol J N Am. 2010; 1(2): 97-102.

Istiqomah L, Sofyan A, Damayanti E, Julendra H. Amino acid profile of earthworm and earthworm meal (Lumbricus rubellus) for animal feedstuff. J Indonesian Trop Anim Agric. 2009; 34(4): 253-257.

Moore S, Spackman DH, Stein WH. Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Anal Chem. 1958; 30(7): 1185–1190.

Crabb JW, editor. Techniques in Protein Chemistry VI. San Diego: Academic Press; 1995. 585 p.

Kaspar H, Dettmer K, Gronwald W, Oefner PJ. Advances in amino acid analysis. Anal Bioanal Chem. 2009; 393(2): 445-452.

vanWandelen C, Cohen SA. Using quaternary high-performance liquid chromatography eluent systems for separating 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate-derivatized amino acid mixtures. J Chromatogr A. 1997; 763(1-2): 11-22.

Boulogne S, Márquez E, García Y, Medina A, Cayot P. Optimización de la operación de secado de la carne de lombriz (Eisenia andrei) para producir harina destinada al consumo animal. Revista Ciencia e Ingeniería. 2008; 29(2): 91-96.

Bosch L, Alegría A, Farré R. Application of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. J Chromatogr B. 2006; 831(1-2): 176-183.

Australian pesticides & veterinary medicines authority: Guidelines for the validation of analytical methods for active constituents, agricultural and veterinary chemical products [Internet]. Kingston, Australia: Australian Government; [updated october 30, 2004; accessed february 20, 2013]. Available at: http://www.apvma.gov.au/publications/guidelines/docs/gl_69_analytical_methods.pdf.

Huber L. Validation of analytical methods and procedures: Lab-Compliance Tutorials [Internet]. USA: Lab-Compliance; [updated february 05, 2010; accessed september 20, 2013]. Available at: http://www.labcompliance.com/tutorial/methods/default.aspx.

Weiss M, Manneberg M, Juranville JF, Lahm HW, Fountoulakis M. Effect of the hydrolysis method on the determination of the amino acid composition of proteins. J Chromatogr A. 1998; 795(2): 263–275.

Masuda A, Dohmae N. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis. Anal Chem. 2010; 82(21): 8939–8945.

Colnaghi Simionato AV, Moraes EP, Carrilho E, Tavares MFM, Kenndler E. Determination of amino acids by capillary electrophoresis-electrospray ionization-mass spectrometry: An evaluation of different protein hydrolysis procedures. Electrophor. 2008; 29(10): 2051-2058.

Marino R, Iammarino M, Santillo A, Muscarella M, Caroprese M, Albenzio M. Technical note: Rapid method for determination of amino acids in milk. J Dairy Sci. 2010; 93(6): 2367-2370.

Mudiam MKR, Ch R, Jain R, Saxena PN, Chauhan A, Murthy RC. Rapid and simultaneous determination of twenty amino acids in complex biological and food samples by solid-phase microextraction and gas chromatography-mass spectrometry with the aid of experimental design after ethyl chloroformate derivatization. J Chromatogr B. 2012; 907: 56–64.

Otter DE. Standardised methods for amino acid analysis of food. Br J Nutr. 2012; 108(S2): S230-S237.

Pickering MV, Newton P. Amino acid hydrolysis: old problems, new solutions. LC-GC. 1990; 8(10): 778-781.

Rutherfurd SM, Gilani GS. Amino acid analysis. Current protocols in protein science. Wiley Interscience; 2009. Supplement 58: p. 11.9.1-11.9.37.

Wathelet B. Nutritional analysis for proteins and amino acids in beans (Phaseolus sp.). Biotechnol Agron Soc Environ. 1999; 3(4): 197-200.

EC. Establishing Community methods of analysis for the determination of amino acids, crude oils and fats, and olaquindox in feedingstuffs, and amending Directive 71/393/EEC. Commission Directive 98/64/EC. Off J Eur Communities. 1998; L257: 14-28.

Kaspar H, Dettmer K, Gronwald W, Oefner PJ. Advances in amino acid analysis. Anal Bioanal Chem. 2009; 393(2): 445-452.

Masuda A, Dohmae N. Examination of an absolute quantity of less than a hundred nanograms of proteins by amino acid analysis. Anal Bioanal Chem. 2013; 405(25): 8073-8081.

Gwatidzo L, Botha BM, McCrindle RI. Determination of amino acid contents of manketti seeds (Schinziophytonrautanenii) by pre-column derivatisation with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and RP-HPLC. Food Chem. 2013; 141(3): 2163-2169.

Bosch L, Alegría A, Farré R. RP-HPLC determination of tiger nut and orgeat amino acid contents. Food Sci Technol Int. 2005; 11(1): 33-40.

Bartolomeo MP, Maisano F. Validation of a reversed-phase HPLC method for quantitative amino acid analysis. J Biomol Tech. 2006; 17(2): 131-137.

Windsor ML. Fish meal. FAO Corporate Document Repository. FAO in partnership with support unit for international fisheries and aquatic research (SIFAR), 2001. Torry Advisory Notes. Version Nº 49. Torry Research Station [electronic edition]. 2001. [cited february 26, 2014]. Available at: http://www.fao.org/wairdocs/tan/x5926e/x5926e01.htm.

García DE, Cova LJ, Castro AR, Medina MG, Palma JR. Efecto del sustrato alimenticio en la composición química y el valor nutritivo de la harina de la lombriz roja (Eisenia spp.). Rev Cient. 2009; 9(1): 55-62.

Johnston IA, Manthri S, Alderson R, et al. Effects of dietary protein level on muscle cellularity and flesh quality in Atlantic salmon with particular reference to gaping. Aquaculture. 2002; 210(1-4): 259-283.

García MD, Macías M, Martínez V. Composición química de dos especies de lombrices de tierra (Eisenia foetida y Eudrilus Eugeniae) obtenidas a partir de residuales porcinos. Revista Computadorizada de Producción Porcina [edición electrónica]. 1997 [citado 26 enero 2014]; 4 (2). Disponible en: http://www.sian.info.ve/porcinos/publicaciones/rccpn/rcpp.htm.

Li P, Mai K, Trushenski J, Wu G. New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids. 2009; 37(1): 43-53.

Morillo M, Visbal T, Rial L, Ovalles F, Aguirre P, Medina AL. Alimentación de alevines de colossoma macropomum con dietas a base de Erythrinaedulis y soya. Interciencia. 2013; 38(2): 121-127.

Morillo SM, Visbal BT, Altuve D, Ovalles DF, Medina GAL. Valoración de dietas en alevines de colossoma macropomun utilizando como fuentes proteicas harinas: de lombriz (eisenia foetida), de soya (glycinemax) y de caraotas (phaseolus vulgaris). Rev Chil Nutr. 2013; 40(2): 147-154.

Published

2014-09-20

How to Cite

1.
Ovalles JF, Medina AL, Márquez E, Rochette J, Luna JR, Morillo M. Quantitative determination of amino acids in earthworm meal (Eisenia andrei) by a Surveyor HPLC system in conjunction with pre-column 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization. Ars Pharm [Internet]. 2014 Sep. 20 [cited 2024 Jul. 22];55(3):35-44. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/4520

Issue

Section

Original Articles