Applications of Photopharmacology in Oncology: A State-of-the-Art Review

Authors

DOI:

https://doi.org/10.30827/ars.v66i4.33781

Keywords:

Photopharmacology; Antineoplastic Agents; Drug Delivery Systems

Abstract

Introduction: Photopharmacology has emerged as a key discipline for the development of highly selective targeted drugs, enabling control over their activation through specific light irradiation. Given the invasive and non-selective nature of many traditional cancer therapies, there is growing interest in this field. This review explores its most relevant applications in cancer treatment.

Method: A narrative literature review was conducted using academic databases such as PubMed, Science Direct, Wiley, and Google Scholar. Articles published in English or Spanish, with free full-text access and related to photopharmacology and oncological diseases, were included. A total of 23 articles were selected based on eligibility criteria and a critical reading of their content.

Results: The reviewed studies highlight multiple applications of photopharmacology in oncology: from light-activated systems for localized therapeutic agent release, to the design of photoactivatable prodrugs, and optical control of microtubules and nuclear receptors. These advances allow for precise spatiotemporal modulation of pharmacological action, showing promising outcomes in prostate, lung, colon, and other cancers.

Conclusions: Photopharmacology represents an innovative therapeutic approach with high potential in oncology, offering more precise, reversible, and less toxic treatments. Its clinical success will depend on the development of safer and more effective activation technologies, as well as the refinement of photoactivatable compounds.

Downloads

Download data is not yet available.

References

Kobauri P, Dekker F, Szymanski W, Feringa B. Rational design in photopharmacology with molecular photoswitches. Angew Chem Int Ed. 2023;62(30):e202300681. doi: 10.1002/anie.202300681

Mubeen M. Photopharmacology. Sch Acad J Pharm. 2020;9(12):336-339. doi: 10.36347/sajp.2020.v09i12.002

Sánchez M, Sánchez P, Araña Z, Sánchez P, Santos M. Una mirada al cáncer desde la perspectiva molecular. Rev Finlay. 2022;12(2):208-220. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2221-24342022000200208

Sagué K, Sagué J, Gómez B, Díaz M. Acción biológica de la terapia fotodinámica sobre el cáncer de vejiga. Correo Científico Médico. 2020;23(2):585-598. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S156043812019000200585

Kang W, Liu Y, Wang W. Light-responsive nanomedicine for cancer immunotherapy. Acta Pharm Sin B. 2023;13(6):2346-2368. doi: 10.1016/j.apsb.2023.05.016

Dunkel P, Ilaš J. Targeted cancer therapy using compounds activated by light. Cancers (Basel). 2021;13(13):3232. doi: 10.3390/cancers13133237

Uhl E, Wolff F, Mangal S, Dube H, Zanin E. Light-controlled cell-cycle arrest and apoptosis. Angew Chem Int Ed. 2021;60(3):1187-1196. doi: 10.1002/anie.202008267

Yi J, Yang X, Zheng L, Yang G, Sun L, Bao Y, et al. Photoactivation of hypericin decreases the viability of RINm5F insulinoma cells through reduction in JNK/ERK phosphorylation and elevation of caspase-9/caspase-3 cleavage and Bax-to-Bcl-2 ratio. Biosci Rep. 2015;35(3):e00191. doi: 10.1042/BSR20150028

Chakraborty I, Jimenez J, Mascharak P. CO-induced apoptotic death of colorectal cancer cells by a luminescent photoCORM grafted on biocompatible carboxymethyl chitosan. Chem Commun (Camb). 2017;53(40):5519-5522. doi: 10.1039/C7CC02842C

Lameijer N, Ernst D, Hopkins S, Meijer M, Askes S, Le Dévédec S, et al. A red-light-activated ruthenium-caged NAMPT inhibitor remains phototoxic in hypoxic cancer cells. Angew Chem Int Ed. 2017;56(38):11549-11553. doi: 10.1002/anie.201703890

Horbatok K, Makhnii T, Kosach V, Danko V, Kovalenko A, Fatiushchenkov S, et al. In vitro and in vivo evaluation of photocontrolled biologically active compounds: potential drug candidates for cancer photopharmacology. J Vis Exp. 2023;(199):e64902. doi: 10.3791/64902

Kirchner S, Pianowski Z. Photopharmacology of antimitotic agents. Int J Mol Sci. 2022;23(10):5657. doi: 10.3390/ijms23105657

Wages F, Brandt T, Martin H, Herges R, Möser E. Light-switchable diazocines as potential inhibitors of testosterone-synthesizing 17β-hydroxysteroid dehydrogenase 3. Chem Biol Interact. 2024;383:110872. doi: 10.1016/j.cbi.2024.110872

Xu Y, Gao C, Andreasson M, Håversen L, Carrasco M, Fleming C, et al. Design and development of photoswitchable DFG-out RET kinase inhibitors. Eur J Med Chem. 2022;243:114226. doi: 10.1016/j.ejmech.2022.114226

Komarova I, Tolstanova G, Kuznietsova H, Dziubenko N, Yanchuka P, Shtanova L, et al. Towards in vivo photomediated delivery of anticancer peptides: insights from pharmacokinetic and -dynamic data. J Photochem Photobiol B. 2022;233:112479. doi: 10.1016/j.jphotobiol.2022.112479

Tiapko O, Groschner K. TRPC3 as a target of novel therapeutic interventions. Cells. 2018;7(7):83. doi: 10.3390/cells7070083

Mutter N, Volaric J, Szymanski W, Maglia G, Feringa B. Reversible photocontrolled nanopore assembly. J Am Chem Soc. 2019;141(36):14356-14363. doi: 10.1021/jacs.9b06998

Long K, Wang Y, Lv W, Yang Y, Xu S, Zhan C, et al. Photoresponsive prodrug-dye nanoassembly for in-situ monitorable cancer therapy. Bioeng Transl Med. 2022;7(3):e10311. doi: 10.1002/btm2.10311

Palasis K, Lokman N, Quirk B, Adwal A, Scolaro L, Huang W. Optical fibre-enabled photoswitching for localised activation of an anti-cancer therapeutic drug. Int J Mol Sci. 2021;22(19):10844. doi: 10.3390/ijms221910844

Szymanski W, Ourailidou M, Velema W, Dekker F, Feringa B. Light-controlled histone deacetylase (HDAC) inhibitors: towards photopharmacological chemotherapy. Chem Eur J. 2015;21(46):16517-16524. doi: 10.1002/chem.201502809

Sharma V, Rana R, Baksi R, Borse S, Nivsarkar M. Light-controlled calcium signalling in prostate cancer and benign prostatic hyperplasia. Futur J Pharm Sci. 2020;6(1):28. doi: 10.1186/s43094-020-00046-w

Bonnet S. Ruthenium-based photoactivated chemotherapy. J Am Chem Soc. 2023;145(43):23397-23415. doi: 10.1021/jacs.3c01135

Eli S, Castagna R, Mapelli M, Parisini E. Recent approaches to the identification of novel microtubule-targeting agents. Front Mol Biosci. 2022;9:841777. doi: 10.3389/fmolb.2022.841777

Wang X, Gigant B, Zheng X, Chen Q. Microtubule-targeting agents for cancer treatment: seven binding sites and three strategies. MedComm Oncol. 2023;2(3):e46. doi: 10.1002/mog2.46

Borowiak M, Nahaboo W, Reynders M, Nekolla K, Jalinot P, Hasserodt J, et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell. 2015;162(2):403-411. doi: 10.1016/j.cell.2015.06.049

Wranik M, Weinert T, Slavov C, Masini T, Furrer A, Gaillard N, et al. Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography. Nat Commun. 2023;14(1):599. doi: 10.1038/s41467-023-36481-5

Mukhopadhyay T, Willems S, Arp C, Morstein J, Haake C, Merk D, et al. Development of light-activated LXR agonists. Chem Med Chem. 2023;18(11):e202200647. doi: 10.1002/cmdc.202200647

Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med. 2019;23(8):4854-4865. doi: 10.1111/jcmm.14356

Volaric J, van der Heide N, Mutter N, Samplonius D, Helfrich W, Maglia G, et al. Visible light control over the cytolytic activity of a toxic pore-forming protein. ACS Chem Biol. 2024;19(2):451-461. doi: 10.1021/acschembio.3c00640

Published

2025-09-19

How to Cite

1.
Jiménez Sánchez LE. Applications of Photopharmacology in Oncology: A State-of-the-Art Review. Ars Pharm [Internet]. 2025 Sep. 19 [cited 2025 Sep. 21];66(4):493-502. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/33781

Issue

Section

Review Articles