Refining the Performance of Abiraterone Acetate through Industry-friendly Techniques for Improving Functionality
DOI:
https://doi.org/10.30827/ars.v66i4.33508Keywords:
Abiraterone; functionality improvement; Neusilin; spray drying; GelucireAbstract
Introduction: Main objective of this study was to enhance solubility and permeability of Abiraterone Acetate (AA) by industry-feasible techniques.
Method: Solid dispersion (SD) of Abiraterone with Gelucire 44/14 (GC44/14), Dexolve, and Eudragit EPO were prepared using various functionality-improving techniques. These properties were characterized by phase solubility, dissolution, permeability, flow properties, differential scanning calorimetry, Fourier transform Infrared Spectroscopy, and X-ray diffraction. Among various techniques and polymers, spray drying with Gelucire was selected based on its ability to enhance solubility. A 32 full factorial design was applied to optimize SD, focusing on dissolution, solubility, and flow property (angle of repose), with material attributes being Abiraterone: Gelucire ratio and Neusilin (NS) amount. Optimal region was selected from overlay plot.
Results: Spray-dried SD exhibited highest solubility, which increased with Gelucire at a 1:2 ratio, resulting in a 405.94-fold increase in solubility. DSC, FTIR, and XRD showed Abiraterone transformation from crystalline to amorphous. Nine batches showed a drug release ranging from 30.85% to 90.33 % at 30 minutes, with solubility between 141.049 μg/mL and 286.307 μg/mL. Angle of repose ranged from fair to excellent. Optimized batch exhibited 85.51% drug release at 30 min, a solubility of 282.296 μg/mL, and good flow. Ex vivo permeability studies revealed 9.32 ± 0.147 % for Abiraterone and 51.72 ± 0.286 % for optimal batch at 90 min.
Conclusion: Solubility, permeability, and dissolution increased significantly when a SD of Abiraterone was prepared with Abiraterone and Neusilin by spray drying method. Systematic, industry-friendly techniques will benefit patients.
Downloads
References
Sankarapillai J, Krishnan S, Ramamoorthy T, Sudarshan KL, Mathur P. Descriptive epidemiology of prostate cancer in India , 2012 – 2019 : Insights from the National Cancer Registry Programme. Indian J Urol. 2024;40:167–73. doi:10.4103/iju.iju.
Schafer EJ, Laversanne M, Sung H, Soerjomataram I. Recent Patterns and Trends in Global Prostate Cancer Incidence and Mortality : An Update. Eur Urol. 2024;87:302–13. doi:10.1016/j.eururo.2024.11.013.
Ferlay J, Rebecca ME, Mph LS. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63. doi:10.3322/caac.21834.
Beg S, Malik AK, Ansari MJ, Malik AA, Ali AMA, Theyab A, et al. Systematic Development of Solid Lipid Nanoparticles of Abiraterone Acetate with Improved Oral Bioavailability and Anticancer Activity for Prostate Carcinoma Treatment. ACS Omega. 2022;7:16968–79. doi:10.1021/ACSOMEGA.1C07254.
Fiala O, Hosek P, Korunkova H, Hora M, Kolar J, Windrichova J, et al. Enzalutamide or Abiraterone Acetate With Prednisone in the Treatment of Metastatic Castration-resistant Prostate Cancer in Real-life Clinical Practice: A Long-term Single Institution Experience. Anticancer Res. 2023;43:463–71. doi:10.21873/anticanres.16183.
Yanagisawa T, Kimura T, Mori K, Suzuki H, Sano T, Otsuka T, et al. Abiraterone acetate versus nonsteroidal antiandrogen with androgen deprivation therapy for high-risk metastatic hormone-sensitive prostate cancer. Prostate. 2022;82:3–12. doi:10.1002/pros.24243.
Oyman A, Başak M, Özçelik M, Özyükseler DT, Işık S, Yıldırım ME. Efficacy of abiraterone acetate in castration-resistant metastatic prostate cancer: A real-world data analysis. Asia Pac J Clin Oncol. 2021;17:e201–7. doi:10.1111/ajco.13426.
Danielak D, Krejčí T, Beránek J. Increasing the efficacy of abiraterone - from pharmacokinetics, through therapeutic drug monitoring to overcoming food effects with innovative pharmaceutical products. Eur J Pharm Sci. 2022;176. doi:10.1016/j.ejps.2022.106254.
Malik JA, Ahmed S, Momin SS, Shaikh S, Alafnan A, Alanazi J, et al. Drug Repurposing: A New Hope in Drug Discovery for Prostate Cancer. ACS Omega. 2023;8:56–73. doi:10.1021/ACSOMEGA.2C05821.
Solymosi T, Tóth F, Orosz J, Basa-Dénes O, Angi R, Jordán T, et al. Solubility Measurements at 296 and 310 K and Physicochemical Characterization of Abiraterone and Abiraterone Acetate. J Chem Eng Data. 2018;63:4453–8. doi:10.1021/acs.jced.8b00566.
Katekar R, Sen S, Riyazuddin M, Husain A, Garg R, Verma S, et al. Augmented experimental design for bioavailability enhancement: a robust formulation of abiraterone acetate. J Liposome Res. 2023;33:65–76. doi:10.1080/08982104.2022.2069811.
Schultz HB, Meola TR, Thomas N, Prestidge CA. Oral formulation strategies to improve the bioavailability and mitigate the food effect of abiraterone acetate. Int J Pharm. 2020;577:119069. doi:10.1016/j.ijpharm.2020.119069.
Almeida HM. Development of a resveratrol solid dispersion with enhanced oral bioavailability by the lyophilization method. ICBAS. 2024.
Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11:1–26. doi:10.3390/pharmaceutics11030132.
Ha ES, Choi DH, Baek IH, Park H, Kim MS. Enhanced oral bioavailability of resveratrol by using neutralized eudragit e solid dispersion prepared via spray drying. Antioxidants. 2021;10:1–12. doi:10.3390/antiox10010090.
Choudhari M, Damle S, Saha RN, Dubey SK, Singhvi G. Formulating abiraterone acetate-HPMCAS-based amorphous solid dispersions: insights into in vitro and biorelevant dissolution assessments and pharmacokinetic evaluations. RSC Adv. 2024;14:38492–505. doi:10.1039/d4ra08163c.
Malkawi R, Malkawi WI, Al-Mahmoud Y, Tawalbeh J. Current Trends on Solid Dispersions: Past, Present, and Future. Adv Pharmacol Pharm Sci. 2022;2022. doi:10.1155/2022/5916013.
Wagh VT, Gilhotra RM, Wagh RD. Solid dispersion (Kneading) technique: A platform for enhancement dissolution rate of valsartan poorly water soluble drug. Int J Pharm Qual Assur. 2020;11:20–4. doi:10.25258/ijpqa.11.1.3.
Asim M, Nazir M, Chauhdary Z, Irfan M, Khalid SH, Asghar S, et al. Enhanced Solubility and Biological Activity of Dexibuprofen-Loaded Silica-Based Ternary Solid Dispersions. Pharmaceutics. 2023;15. doi:10.3390/pharmaceutics15020399.
Hassan F, Sher M, Hussain MA, Saadia M, Naeem-Ul-Hassan M, Rehman MF ur, et al. Pharmaceutical and Pharmacological Evaluation of Amoxicillin after Solubility Enhancement Using the Spray Drying Technique. ACS Omega. 2022;7:48506–19. doi:10.1021/acsomega.2c06662.
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci. 2023;18:100834. doi:10.1016/j.ajps.2023.100834.
Sharma U, Agrawal S, Chhajed M, Dwivedi S. Improved Dissolution and Solubility Characteristics of Clopidogrel Bisulphate using Gelucire 44/14. Eur J Parenter Pharm Sci. 2024;29. doi:10.37521/ejpps.29103.
Inam S, Irfan M, Lali NUA, Syed HK, Asghar S, Khan IU, et al. Development and Characterization of Eudragit® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals. 2022;15. doi:10.3390/ph15040492.
Carvalho Feitosa R, Souza Ribeiro Costa J, van Vliet Lima M, Sawa Akioka Ishikawa E, Cogo Müller K, Bonin Okasaki F, et al. Supramolecular Arrangement of Doxycycline with Sulfobutylether-β-Cyclodextrin: Impact on Nanostructuration with Chitosan, Drug Degradation and Antimicrobial Potency. Pharmaceutics. 2023;15. doi:10.3390/pharmaceutics15041285.
Choi MJ, Woo MR, Choi HG, Jin SG. Effects of Polymers on the Drug Solubility and Dissolution Enhancement of Poorly Water-Soluble Rivaroxaban. Int J Mol Sci. 2022;23. doi:10.3390/ijms23169491.
Maulvi FA, Dalwadi SJ, Thakkar VT, Soni TG, Gohel MC, Gandhi TR. Improvement of dissolution rate of aceclofenac by solid dispersion technique. Powder Technol. 2011;207:47–54. doi:10.1016/j.powtec.2010.10.009.
Kanojiya PS, Charde Y, Avari JG, Wadetwa RN. Solid Dispersion of Lumefantrine Using Soluplus® by Solvent Evaporation Method: Formulation, Characterization and in-vitro Antimalarial Screening. Indian J Pharm Educ Res. 2022;56:121–32. doi:10.5530/ijper.56.1.15.
Buya AB, Mahlangu P, Witika BA. From lab to industrial development of lipid nanocarriers using quality by design approach. Int J Pharm X. 2024;8:100266. doi:10.1016/j.ijpx.2024.100266.
Gude R. Solubility enhancement and quality by design (qbd) assisted fabrication of fast dissolving buccal film for risperidone. IJPSR. 2023;14:459–81. doi:10.13040/IJPSR.0975-8232.14(1).459-81.
Wathore SA, Chhajed M, Singh M. To Design QBD ( Quality-by-Design ) Approach to Understand the Processing Factors Impact Melt-Extruded Solid Dispersions with an Instantaneous Release. Int J Pharm Biol Sci Arch. 2024;12:109–18.
Liu Y, Li Y, Xu P, Shen Y, Tang B, Wang Q. Development of Abiraterone Acetate Nanocrystal Tablets to Enhance Oral Bioavailability: Formulation Optimization, Characterization, In Vitro Dissolution and Pharmacokinetic Evaluation. Pharmaceutics. 2022;14. doi:10.3390/pharmaceutics14061134.
Shahoud S, Abdlwahed W, Hammad T. Development a taste-masked acetaminophen solid dispersions using Eudragit® E100 polymer by solvent evaporation technique. J Res Pharm. 2023;27:1998–2006. doi:10.29228/jrp.479.
Wang J, Huang B, Dai J, Chen G, Ren L. Inclusion complex of lurasidone hydrochloride with Sulfobutylether-β-cyclodextrin has enhanced oral bioavailability and no food effect. Am J Transl Res. 2022;14:1495–506.
Fan W, Zhang X, Zhu W, Zhang X, Di L. Preparation of curcumin-eudragit® EPO solid dispersions with gradient temperature through Hot-Melt extrusion. Molecules. 2021;26. doi:10.3390/molecules26164964.
Chi KN, Rathkopf D, Smith MR, Efstathiou E, Attard G, Olmos D, et al. Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol. 2023;41:3339–51. doi:10.1200/JCO.22.01649.
Fouad SA, Malaak FA, El-Nabarawi MA, Zeid KA, Ghoneim AM. Preparation of solid dispersion systems for enhanced dissolution of poorly water soluble diacerein: In-vitro evaluation, optimization and physiologically based pharmacokinetic modeling. PLoS One. 2021;16:1–26. doi:10.1371/journal.pone.0245482.
Sitovs A, Mohylyuk V. Ex vivo permeability study of poorly soluble drugs across gastrointestinal membranes: acceptor compartment media composition. Drug Discov Today. 2024;29:104214. doi:10.1016/j.drudis.2024.104214.
Shi Q, Carrillo JC, Penman MG, Manton J, Fioravanzo E, Powrie RH, et al. Assessment of the Intestinal Absorption of Higher Olefins by the Everted Gut Sac Model in Combination with in Silico New Approach Methodologies. Chem Res Toxicol. 2022;35:1383–92. doi:10.1021/acs.chemrestox.2c00089.
Hu B, Lv Z, Chen G, Lu J. Polymer selection for amorphous solid dispersion of a new drug candidate by investigation of drug polymer molecular interactions. Pharmazie. 2023;78:185–95. doi:10.1691/ph.2023.2061.
Bukkapatnam V, Mukthinuthalapati MA, Routhu KC. Study on Stress Degradation Behaviour of Abiraterone Acetate in Film Coated Tablets and Identification of Major Stress Degradation Product by Liquid Chromatography-Ultraviolet-Electrospray Ionization-Mass Spectrometry. Indian J Pharm Sci. 2022;84:300–10. doi:10.36468/pharmaceutical-sciences.923.
Gala U, Miller D, Williams RO. Improved dissolution and pharmacokinetics of abiraterone through kinetisol® enabled amorphous solid dispersions. Pharmaceutics. 2020;12. doi:10.3390/pharmaceutics12040357.
Liu C, Desai KG, Liu C. Enhancement of Dissolution Rate of Valdecoxib Using Solid Dispersions with Polyethylene Glycol 4000. Drug Dev Ind Pharm. 2005;31:1–10. doi:10.1081/ddc-200043918.
Talla S, Wadher K, Umekar M, Lohiya RT. Formulation, Optimization and Evaluation of Solid Dispersion of Deferasirox Using Factorial Design. J Drug Deliv Ther. 2024;14:23–31. doi:10.22270/jddt.v14i5.6526.
Bertoni S, Albertini B, Passerini N. Effect of polyoxylglycerides-based excipients (Gelucire®) on ketoprofen amorphous solubility and crystallization from the supersaturated state. Int J Pharm. 2025;669:125030. doi:10.1016/j.ijpharm.2024.125030.
Tamizhmathy M, Gupta U, Shettiwar A, Shiva G. Journal of Drug Delivery Science and Technology Formulation of inclusion complex of Abiraterone acetate with 2-Hydroxy propyl-Beta-Cyclodextrin : physiochemical characterization , molecular docking and bioavailability evaluation 2023;82:104321.
Bakhrushina E, Buraya L, Moiseev E, Shumkova M, Davydova M, Krasnyuk I. Optimizing Abiraterone Delivery through Intratumoral In Situ Implant: A Prospective Pharmaceutical Development Approach. Sci Pharm. 2023;2:37–45. doi:10.58920/sciphar02020037.
Braeckmans M, Augustijns P, Mols R, Servais C, Brouwers J. Investigating the Mechanisms behind the Positive Food Effect of Abiraterone Acetate: In Vitro and Rat In Situ Studies. Pharmaceutics. 2022;14. doi:10.3390/pharmaceutics14050952.
Møller A, Schultz HB, Meola TR. The Influence of Solidification on the in vitro Solubilisation of Blonanserin Loaded Supersaturated Lipid-Based Oral Formulations. Eur J Pharm Sci. 2021;157:105640. doi:10.1016/j.ejps.2020.105640.
Mondal S, Sirvi A, Jadhav K, Sangamwar AT. Supersaturating lipid-based solid dispersion of atazanavir provides enhanced solubilization and supersaturation in the digestive aqueous phase. Int J Pharm. 2023;638:1–10. doi:10.1016/j.ijpharm.2023.122919.
Rana H, Dholakia M, Gohel M, Omri A, Thakkar V, Gandhi T. Demonstration of Advanced Data Mining Tools for Optimization of Pellets Employing Modified Extrusion-pelletization Technique. Curr Drug Ther. 2020;16:154–69. doi:10.2174/1574885515999201217155123.
Rana HB, Gohel MC, Dholakia MS, Gandhi TR, Omri A, Thakkar VT. Development of Sustained Release Pellets of Galantamine HBr by Extrusion Spheronization Technique Incorporating Risk based QbD Approach. Res J Pharm Technol. 2018;11.
Rana H, Panchal M, Thakkar V, Gandhi T, Dholakia M. Investigating in-vitro functionality and in-vivo taste assessment of eco-friendly Tadalafil Pastilles. Heliyon. 2024;10:e29543. doi:10.1016/j.heliyon.2024.e29543.
Rana H, Patel D, Thakkar V, Gandhi T. Atovaquone smart lipid system: Design, statistical optimization, and in-vitro evaluation. Food Hydrocoll Heal. 2023;4:100144. doi:10.1016/j.fhfh.2023.100144.
Benmore CJ, Benmore SR, Edwards AD, Shrader CD, Bhat MH. A high energy x-ray diffraction study of amorphous Indomethacin . J Pharm Sci. 2022;111:818–24.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hardik Rana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The articles, which are published in this journal, are subject to the following terms in relation to the rights of patrimonial or exploitation:
- The authors will keep their copyright and guarantee to the journal the right of first publication of their work, which will be distributed with a Creative Commons BY-NC-SA 4.0 license that allows third parties to reuse the work whenever its author, quote the original source and do not make commercial use of it.
b. The authors may adopt other non-exclusive licensing agreements for the distribution of the published version of the work (e.g., deposit it in an institutional telematic file or publish it in a monographic volume) provided that the original source of its publication is indicated.
c. Authors are allowed and advised to disseminate their work through the Internet (e.g. in institutional repositories or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).