Design and development of quetiapine fumarate nanosuspension by media milling method
DOI:
https://doi.org/10.30827/ars.v66i1.29818Keywords:
Quetiapine fumarate, Nano suspension, Media milling, Zeta potential, Particle sizeAbstract
Introduction: The critical and complex properties of Biopharmaceutics Classification System Class II quetiapine fumarate active pharmaceutical ingredient molecules that complicate effective oral delivery of these active pharmaceutical ingredients include low aqueous solubility and reduced bioavailability.
Objective: The objective of this investigation is to develop a nanosuspension formulation of quetiapine fumarate using media milling techniques to effectively reduce particle size and enhance dissolution rate.
Method: Quetiapine fumarate Nano suspensions were prepared by the media milling method. The milling process was optimized by studying the effects of critical process parameters on the size of nanosuspension using a factorial design approach. The prepared nanosuspension is subjected to various characterization techniques such as Particle size, Zeta Potential, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, and in vitro dissolution rate assessment.
Results: The obtained results demonstrate that the average particle size of the prepared nanosuspensions is 225 nm with a Polydispersity index of 0.530, while the average Zeta potential is -38.2 mv. The crystalline structure of quetiapine fumarate nano-suspension is evident from differential scanning calorimetry and X-ray powder diffraction.
Conclusion: The dissolution rate of the nanosuspension is significantly faster than that of pure Quetiapine Fumarate, and the Cumulative drug release (%) of nanosuspension is higher than that of pure Quetiapine Fumarate , indicating that the use of nanotechnology can considerably enhance the dissolution rate.
Downloads
References
Sharma OP, Patel V, Mehta T. Design of experiment approach in development of febuxostat nanocrystal: Application of Soluplus® as stabilizer. Powder Technol 2016;302:396–405. Doi:10.1016/j.powtec.2016.09.004 DOI: https://doi.org/10.1016/j.powtec.2016.09.004
Hatahet T, Morille M, Hommoss A, Dorandeu C, Müller RH, Bégu S. Dermal quercetin smartcrystals®: Formulation development, antioxidant activity and cellular safety. Eur J Pharm Biopharm 2016;102:51–63. Doi:10.1016/j.ejpb.2016.03.004 DOI: https://doi.org/10.1016/j.ejpb.2016.03.004
Yao J, Cui B, Zhao X, Wang Y, Zeng Z, Sun C, et al. Preparation, characterization, and evaluation of azoxystrobin nanosuspension produced by wet media milling. Appl Nanosci 2018;8(3):297–307. Doi:10.1007/s13204-018-0745-5 DOI: https://doi.org/10.1007/s13204-018-0745-5
Hu J, Johnston KP, Williams RO. Nanoparticle Engineering Processes for Enhancing the Dissolution Rates of Poorly Water Soluble Drugs. Drug Dev Ind Pharm. 2004;30(3):233–45. Doi:10.1081/DDC-120030422 DOI: https://doi.org/10.1081/DDC-120030422
Stahr PL, Keck CM. Preservation of rutin nanosuspensions without the use of preservatives. Beilstein J Nanotechnol. 2019;10:1902–13. Doi:10.3762/bjnano.10.185 DOI: https://doi.org/10.3762/bjnano.10.185
Jadhav SP, Singh SK, Chawra HS. Review on Nanosuspension as a Novel Method for Solubility and Bioavailability Enhancement of Poorly Soluble Drugs. Adv Pharmacol Pharm. 2023;11(2):117–30. Doi: 10.13189/app.2023.110204 DOI: https://doi.org/10.13189/app.2023.110204
Karakucuk A, Teksin ZS, Eroglu H, Celebi N. Evaluation of improved oral bioavailability of ritonavir nanosuspension. Eur J Pharm Sci. 2019;131(July 2018):153–8. Doi:10.1016/j.ejps.2019.02.028 DOI: https://doi.org/10.1016/j.ejps.2019.02.028
Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16. Doi:10.1016/j.ejpb.2005.05.009 DOI: https://doi.org/10.1016/j.ejpb.2005.05.009
Patel PJ, Gajera BY, Dave RH. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Drug Dev Ind Pharm. 2018;44(12):1942–52. Doi:10.1080/03639045.2018.1503296 DOI: https://doi.org/10.1080/03639045.2018.1503296
Flach F, Breitung-Faes S, Kwade A. Model based process optimization of nanosuspension preparation via wet stirred media milling. Powder Technol. 2018;331:146–54. Doi:10.1016/j.powtec.2018.03.011 DOI: https://doi.org/10.1016/j.powtec.2018.03.011
Özcan Bülbül E, Mesut B, Cevher E, Öztaş E, Özsoy Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J Drug Deliv Sci Technol. 2019;54:101358. Doi:10.1016/j.jddst.2019.101358 DOI: https://doi.org/10.1016/j.jddst.2019.101358
Yadollahi R, Vasilev K, Simovic S. Nanosuspension Technologies for Delivery of Poorly Soluble Drugs. Chen H, editor. J Nanomater. 2015;2015:216375. Doi:10.1155/2015/216375 DOI: https://doi.org/10.1155/2015/216375
Lakshmi P, Kumar GA. Nanosuspension technology: A review. Int J Pharm Pharm Sci. 2010;2(SUPPL. 4):35–40.
Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24(1):1–16. Doi:10.1186/s40824-020-0184-8
Chandra A, Soni RK, Sharma U, Jain SK. Review Article Nanosuspension : an Overview. 2013;3(6):162–7. Doi:10.22270/jddt.v3i6.677 DOI: https://doi.org/10.22270/jddt.v3i6.677
Lemke A, Kiderlen AF, Petri B, Kayser O. Delivery of amphotericin B nanosuspensions to the brain and determination of activity against Balamuthia mandrillaris amebas. Nanomedicine Nanotechnology, Biol Med. 2010;6(4):597–603. Doi:10.1016/j.nano.2009.12.004 DOI: https://doi.org/10.1016/j.nano.2009.12.004
Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomaterials research. 2020;24(1):3. DOI: https://doi.org/10.1186/s40824-020-0184-8
Hallinen T, Soini EJ, Granström O, Ovaskainen Y, Leinonen E, Koponen HJ, Hänninen K. Differential use of extended and immediate release quetiapine: a retrospective registry study of Finnish inpatients with schizophrenia spectrum and bipolar disorders. BMJ open. 2012;2(4):e000915. DOI: https://doi.org/10.1136/bmjopen-2012-000915
Aher SJ, Patil AS, Patil PP, Kale SA, Joshi SC. Preparation and characterization of eudragit based nanosuspensions for the oral drug delivery. 2023;12(5):6301–10. Doi: 10.48047/ecb/2023.12.si5a.0556
Kolipaka T, Sen S, Mane SS, Bajad GD, Dengale SJ, Ranjan OP. Development of posaconazole nanosuspension for bioavailability enhancement: Formulation optimization, in vitro characterization, and pharmacokinetic study. J Drug Deliv SciTechnol.2023;83:104434. Doi:10.1016/j.jddst.2023.104434 DOI: https://doi.org/10.1016/j.jddst.2023.104434
Huang Y, Luo X, You X, Xia Y, Song X, Yu L. The preparation and evaluation of water-soluble SKLB610 nanosuspensions with improved bioavailability. AAPS pharmscitech. 2013;14(3):1236–43. DOI: https://doi.org/10.1208/s12249-013-0005-7
Shirsath N, Marathe D, Jaiswal P, Zawar L. A 32 Factorial Design Approach for Formulation and Optimization of Azilsartan Medoxomil Nanosuspension for Solubility Enhancement. Indian J Pharm Educ Res. 2022;56(2):S365–73. Doi: 10.5530/ijper.56.2s.107 DOI: https://doi.org/10.5530/ijper.56.2s.107
Vadlamudi HC, Yalavarthi PR, Nagaswaram T, Rasheed A, Peesa JP. In-vitro and pharmacodynamic characterization of solidified self microemulsified system of quetiapine fumarate. J Pharm Investig. 2019;49(1):161–72. Doi:10.1007/s40005-018-0397-1
Narala A, Veerabrahma K. Preparation, Characterization and Evaluation of Quetiapine Fumarate Solid Lipid Nanoparticles to Improve the Oral Bioavailability. J Pharm. 2013;2013:1–7. Doi:10.1155/2013/265741 DOI: https://doi.org/10.1155/2013/265741
Medarević D, Djuriš J, Ibrić S, Mitrić M, Kachrimanis K. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int J Pharm. 2018;540(1–2):150–61. Doi:10.1016/j.ijpharm.2018.02.011 DOI: https://doi.org/10.1016/j.ijpharm.2018.02.011
Gulsun T, Borna SE, Vural I, Sahin S. Preparation and characterization of furosemide nanosuspensions. J Drug Deliv Sci Technol. 2018;45:93–100. Doi:10.1016/j.jddst.2018.03.005 DOI: https://doi.org/10.1016/j.jddst.2018.03.005
Peter S, Mathews MM, Saju F, Paul S. Development, Optimization and In Vitro Characterization of Eudragit-Ganciclovir Nanosuspension or Treating Herpes Simplex Keratitis. J Pharm Innov. 2023; Doi:10.1007/s12247-023-09723-8 DOI: https://doi.org/10.1007/s12247-023-09723-8
He W, Zhang J, Ju J, Wu Y, Zhang Y, Zhan L, et al. Preparation, characterization, and evaluation of the antitumor effect of kaempferol nanosuspensions. Drug Deliv Transl Res. 2023; Doi:10.1007/s13346-023-01357-0 DOI: https://doi.org/10.21203/rs.3.rs-2229878/v1
Honmane SM, Chimane SM, Bandgar SA, Patil SS. Development and optimization of capecitabine loaded nanoliposomal system for cancer delivery. Indian J Pharm Educ Res. 2020;54(2):376–84. DOI: https://doi.org/10.5530/ijper.54.2.43
Habib BA, Sayed S, Elsayed GM. Enhanced transdermal delivery of ondansetron using nanovesicular systems: Fabrication, characterization, optimization and ex-vivo permeation study-Box-Cox transformation practical example. Eur J Pharm Sci .2018;115:352–61. Doi:10.1016/j.ejps.2018.01.044 DOI: https://doi.org/10.1016/j.ejps.2018.01.044
Zaki RM, Aldawsari MF, Alossaimi MA, Alzaid SF, Devanathadesikan Seshadri V, Almurshedi AS, Aldosari BN, Yusif RM, Sayed OM. Brain Targeting of Quetiapine Fumarate via Intranasal Delivery of Loaded Lipospheres: Fabrication, In-Vitro Evaluation, Optimization, and In-Vivo Assessment. Pharmaceuticals (Basel). 2022 Aug 30;15(9):1083. doi: 10.3390/ph15091083. DOI: https://doi.org/10.3390/ph15091083
Guan, W., Ma, Y., Ding, S. et al. The technology for improving stability of nanosuspensions in drug delivery. J Nanopart Res. 2022;24:14 Doi:10.1007/s11051-022-05403-9. DOI: https://doi.org/10.1007/s11051-022-05403-9
Vadlamudi HC, Yalavarthi PR, Nagaswaram T, Rasheed A, Peesa JP. In-vitro and pharmacodynamic characterization of solidified self microemulsified system of quetiapine fumarate. Journal of Pharmaceutical Investigation. 2019;49:161-72. DOI: https://doi.org/10.1007/s40005-018-0397-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Komal Parmar, Mehul Patel, Kishorkumar sorathia, Tejal Soni

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The articles, which are published in this journal, are subject to the following terms in relation to the rights of patrimonial or exploitation:
- The authors will keep their copyright and guarantee to the journal the right of first publication of their work, which will be distributed with a Creative Commons BY-NC-SA 4.0 license that allows third parties to reuse the work whenever its author, quote the original source and do not make commercial use of it.
b. The authors may adopt other non-exclusive licensing agreements for the distribution of the published version of the work (e.g., deposit it in an institutional telematic file or publish it in a monographic volume) provided that the original source of its publication is indicated.
c. Authors are allowed and advised to disseminate their work through the Internet (e.g. in institutional repositories or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).