Citrus Flavonones into nanotechnology-based formulations to skin treatment

Authors

DOI:

https://doi.org/10.30827/ars.v65i1.29433

Keywords:

drug delivery systems; nanoparticles; flavonoids; Citrus

Abstract

Introduction: Flavonones show potential application in the treatment of skin disorders, whose performance may be improved by using lipid and polymeric nanocarriers. In this review, a recent approach regarding nanocarriers containing either naringin, naringenin, hesperidin or hesperitin for skin application are discussed.

Method: This review approaches the publications from the last 6 years about nanosystems containing Citrus flavonones for cutaneous applications. The articles were selected by searching in Scopus database for nanosystem containing either hesperidin, hesperitin, naringin or naringenin for cutaneous application, research articles written in English and published between 2018 and 2023, and reporting about skin penetration or biological evaluation.

Results: Majority of reports employed lipid systems as nanocarriers. Naringenin was the most used flavonone. In relation to skin benefits, improved wound healing, atopic dermatitis treatment and stress oxidative-related diseases are highlighted. Despite the probable benefits, the development of plant-based nanomedicines is complex, which imposes limitations on the development of new pharmaceutical products. Further, the potential of flavonoids in the treatment of skin cancer has been shown.

Conclusions: Lipid, polymeric and nanohybrid carriers are employed to deliver flavanones. Due to their antioxidant and anti-inflammatory activities, flavanones bear potential applications in the treatment of different skin disorders. Therefore, there is a promising application of flavanones to the improvement of human health, mainly with their loading into nanocarriers.

Downloads

Download data is not yet available.

Author Biography

Júlia Scherer Santos, Department of Chemistry, Federal University Viçosa, Viçosa

Pharmacist. phD in Pharmaceutical Nanotechnology. Specialist in Cosmetology. Experience as professor. I work in the folloing areas: pharmaceutical development, Cosmetology, Nanotechnology

References

Ma G, Zhang L, Sugiura M, Kato M. Citrus and health. In: The Genus Citrus. Elsevier; 2020. p. 495–511. doi: 10.1016/C2016-0-02375-6

Zahr S, Zahr R, El Hajj R, Khalil M. Phytochemistry and biological activities of Citrus sinensis and Citrus limon: an update. J Herb Med. 2023;41:100737. doi: 10.1016/j.hermed.2023.100737

Martins RC, Leonel S, Souza JMA, Lima GPP, Leonel M, Putti FF, et al. Profile of Bioactive Compounds in Orange Juice Related to the Combination of Different Scion/Rootstocks, Packaging and Storage. Horticulturae. 2023;9(3):347. doi: 10.3390/horticulturae9030347.

Oliveira da Silva L, Assunção Ferreira MR, Lira Soares LA. Nanotechnology Formulations Designed with Herbal Extracts and Their Therapeutic Applications – A Review. Chem Biodivers. 2023;20(8):e202201241 doi: https: 10.1002/cbdv.202201241

Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82(4):513–23. doi: 10.1016/j.fitote.2011.01.018

Sebghatollahi Z, Ghanadian M, Agarwal P, Ghaheh HS, Mahato N, Yogesh R, et al. Citrus Flavonoids: Biological Activities, Implementation in Skin Health, and Topical Applications: A Review. ACS Food Sci Technol. 2022 Sep 16;2(9):1417–32. doi:10.1021/acsfoodscitech.2c00165.

Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, et al. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci. 2021;293:102437. doi: 10.1016/j.cis.2021.102437.

Tsai MJ, Huang Y Bin, Fang JW, Fu YS, Wu PC. Preparation and evaluation of submicron-carriers for naringenin topical application. Int J Pharm. 2015;481(1–2):84–90. doi: 10.1016/j.ijpharm.2015.01.034.

Romero GB, Chen R, Keck CM, Müller RH. Industrial concentrates of dermal hesperidin smartCrystals® - Production, characterization & long-term stability. Int J Pharm. 2015;482(1–2):54–60. doi: 10.1016/j.ijpharm.2014.11.039.

Tsai MJ, Huang Y Bin, Fang JW, Fu YS, Wu PC. Preparation and characterization of naringenin-loaded elastic liposomes for topical application. PLoS One. 2015;10(7):1–12. doi: 10.1371/journal.pone.0131026.

Farzaei MH, Derayat P, Pourmanouchehri Z, Kahrarian M, Samimi Z, Hajialyani M, et al. Characterization and evaluation of antibacterial and wound healing activity of naringenin-loaded polyethylene glycol/polycaprolactone electrospun nanofibers. J Drug Deliv Sci Technol. 2023;81:104182. doi: 10.1016/j.jddst.2023.104182.

Akrawi SH, Gorain B, Nair AB, Choudhury H, Pandey M, Shah JN, et al. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing. Pharmaceutics. 2020;12(9):1–23. doi: 10.3390/pharmaceutics12090893.

Taymouri S, Hashemi S, Varshosaz J, Minaiyan M, Talebi A. Fabrication and evaluation of hesperidin loaded polyacrylonitrile/polyethylene oxide nanofibers for wound dressing application. J Biomater Sci Polym. 2021;32(15):1944–65. doi: 10.1080/09205063.2021.1952380.

Jangde R, Elhassan GO, Khute S, Singh D, Singh M, Sahu RK, et al. Hesperidin-Loaded Lipid Polymer Hybrid Nanoparticles for Topical Delivery of Bioactive Drugs. Pharmaceuticals. 2022;15(2). doi: 10.3390/ph15020211.

Ren X, Hu Y, Chang L, Xu S, Mei X, Chen Z. Electrospinning of antibacterial and anti-inflammatory Ag@hesperidin core-shell nanoparticles into nanofibers used for promoting infected wound healing. Regen Biomater. 2022;9: rbac012. doi:10.1093/rb/rbac012.

Gupta P, Sheikh A, Kesharwani P, Abourehab MAS. Amelioration of Full-Thickness Wound Using Hesperidin Loaded Dendrimer-Based Hydrogel Bandages. Biosensors. 2022;12(7). doi: 10.3390/bios12070462.

Trombino S, Servidio C, Laganà AS, Conforti F, Marrelli M, Cassano R. Viscosified solid lipidic nanoparticles based on naringenin and linolenic acid for the release of cyclosporine a on the skin. Molecules. 2020;25(15). doi: 10.3390/molecules25153535.

Joshi H, Hegde AR, Shetty PK, Gollavilli H, Managuli RS, Kalthur G, et al. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations. Photodermatol Photoimmunol Photomed. 2018;34(1):69–81. doi: 10.1111/phpp.12335.

Parashar P, Pal S, Dwivedi M, Saraf SA. Augmented Therapeutic Efficacy of Naringenin Through Microemulsion-Loaded Sericin Gel Against UVB-Induced Photoaging. AAPS PharmSciTech. 2020;21(6). doi: 10.1208/s12249-020-01766-1.

George D, Maheswari PU, Begum KMMS. Cysteine conjugated chitosan based green nanohybrid hydrogel embedded with zinc oxide nanoparticles towards enhanced therapeutic potential of naringenin. React Funct Polym. 2020;148. doi: 10.1016/j.reactfunctpolym.2020.104480.

Stanisic D, Liu LHB, Dos Santos R V., Costa AF, Durán N, Tasic L. New sustainable process for hesperidin isolation and anti-ageing effects of hesperidin nanocrystals. Molecules. 2020;25(19):1–18. doi: 10.3390/molecules25194534.

Gollavilli H, Hegde AR, Managuli RS, Bhaskar KV, Dengale SJ, Reddy MS, et al. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids Surfaces B Biointerfaces. 2020;193:111122. doi: 10.1016/j.colsurfb.2020.111122.

Pleguezuelos-Villa M, Mir-Palomo S, Díez-Sales O, Buso MAOV, Sauri AR, Nácher A. A novel ultradeformable liposomes of Naringin for anti-inflammatory therapy. Colloids Surfaces B Biointerfaces. 2018;162:265–70. doi: 10.1016/j.colsurfb.2017.11.068.

Vaz VM, Jitta SR, Verma R, Kumar L. Hesperetin loaded proposomal gel for topical antioxidant activity. J Drug Deliv Sci Technol. 2021;66:102873. Available from: doi: 10.1016/j.jddst.2021.102873.

Sander M, Sander M, Burbidge T, Beecker J. The efficacy and safety of sunscreen use for the prevention of skin cancer. Cmaj. 2020;192(50):E1802–8. doi: 10.1503/cmaj.201085.

Yeo E, Yew Chieng CJ, Choudhury H, Pandey M, Gorain B. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound: Fabrication, characterization and comparative in vitro evaluations. Curr Res Pharmacol Drug Discov. 2021;2:100019. doi: 10.1016/j.crphar.2021.100019.

Kim TH, Kim GD, Ahn HJ, Cho JJ, Park YS, Park CS. The inhibitory effect of naringenin on atopic dermatitis induced by DNFB in NC/Nga mice. Life Sci. 2013;93(15):516–24. Available from: doi: 10.1016/j.lfs.2013.07.027.

Alalaiwe A, Lin CF, Hsiao CY, Chen EL, Lin CY, Lien WC, et al. Development of flavanone and its derivatives as topical agents against psoriasis: The prediction of therapeutic efficiency through skin permeation evaluation and cell-based assay. Int J Pharm. 2020;581:119256. doi:10.1016/j.ijpharm.2020.119256.

Vaz S, Silva R, Amaral MH, Martins E, Sousa Lobo JM, Silva AC. Evaluation of the biocompatibility and skin hydration potential of vitamin E-loaded lipid nanosystems formulations: In vitro and human in vivo studies. Colloids Surfaces B Biointerfaces. 2019;179:242–9. doi: 10.1016/j.colsurfb.2019.03.036.

Scherer Santos J, Pereira Gonzatto M. Citrus Essential Oils and Nanosystems towards Skin Delivery. In: Mateus Pereira Gonzatto, Júlia Scherer Santos, editors. Citrus Research - Horticultural and Human Health Aspects. 1st ed. London: IntechOpen; 2023. p. 109-213. doi: 10.5772/intechopen.110406

Michalak M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int J Mol Sci. 2022;23(2):8–12. doi: 10.3390/ijms23020585.

Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol. 2012 Jul;4(3):308–19. doi: 10.4161/derm.22804.

Perugini P, Bonetti M, Cozzi AC, Colombo GL. Topical Sunscreen Application Preventing Skin Cancer: Systematic Review. Cosmetics. 2019 Jul 11;6(3):42. doi: 10.3390/cosmetics6030042.

Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic Wound-Healing Science. Medicina. 2021;57(10):1072. doi: 10.3390/medicina57101072.

Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185(1):12–21. doi: 10.1016/j.jconrel.2014.04.018.

Leung V, Ko F. Biomedical applications of nanofibers. Polym Adv Technol. 2011;22(3):350–65. doi: 10.1002/pat.1813.

Ahamad MS, Siddiqui S, Jafri A, Ahmad S, Afzal M, Arshad M. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One. 2014;9(10). doi: 10.1371/journal.pone.0110003.

Beg S, Barkat MA, Ahmad FJ. Nanophytomedicine [Internet]. 1st ed. Beg S, Barkat MA, Ahmad FJ, editors. Nanophytomedicine: concept to clinic. Singapore: Springer Singapore; 2020. 220 p. doi: 10.1007/978-981-15-4909-0.

Urban K, Mehrmal S, Uppal P, Giesey RL, Delost GR. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017. JAAD Int. 2021;2:98–108. doi: 10.1016/j.jdin.2020.10.013

Cullen JK, Simmons JL, Parsons PG, Boyle GM. Topical treatments for skin cancer. Adv Drug Deliv Rev. 2020;153:54–64. doi: 10.1016/j.addr.2019.11.002.

Downloads

Published

2023-12-20

How to Cite

1.
Scherer Santos J, Gonzatto MP. Citrus Flavonones into nanotechnology-based formulations to skin treatment. Ars Pharm [Internet]. 2023 Dec. 20 [cited 2024 Jul. 22];65(1):84-92. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/29433

Issue

Section

Review Articles