Impact of the homozygous mutation in Nudix hydrolase 15 on myelosuppression with 6-mercaptopurine in a European girl with acute lymphoblastic leukemia: A case report

Authors

  • Laura Elena Pineda-Lancheros Hospital Universitario Virgen de las Nieves, Servicio de Farmacia, Unidad de Farmacogenética, Granada. Universidad de Granada
  • María del Mar Sánchez-Suárez Hospital Universitario Virgen de las Nieves, Servicio de Farmacia, Granada https://orcid.org/0000-0003-2459-4440
  • Luciana María Marangoni-Iglecias Hospital Universitario Virgen de las Nieves, Servicio de Farmacia, Unidad de Farmacogenética, Granada. Universidad de Granada
  • Ricardo García-Fumero Hospital Universitario Virgen de las Nieves, Servicio de Farmacia, Unidad de Farmacogenética. Universidad de Granada https://orcid.org/0000-0003-2459-4440
  • Susana Rojo-Tolosa Hospital Universitario Virgen de las Nieves, Servicio de Farmacia, Unidad de Farmacogenética, Granada. Universidad de Granada
  • Noelia Moreno-Toro Hospital Universitario Virgen de las Nieves, Servicio de Oncología y Hematología pediátrica, Granada

DOI:

https://doi.org/10.30827/ars.v64i3.27769

Keywords:

pharmacogenetics, 6-mercaptopurine, acute lymphoblastic leukemia

Abstract

A 6-year-old girl diagnosed with intermediate-risk acute lymphoblastic leukemia (ALL) presented with severe myelotoxicity and multiple infections during phase IB induction treatment with 6-mercaptopurine (6-MP). In the subsequent treatment phases, which included 6-MP, the patient continued to show bone marrow aplasia and neutropenia, necessitating numerous dose adjustments and interruptions. The recommended dose was eventually reduced to 5 %. A pharmacogenetic analysis, conducted in induction phase IB, detected three single-nucleotide polymorphisms (SNPs) of the thiopurine S-methyltransferase (TPMT) gene, and the phenotype of a normal metabolizer was observed. As a result of a second pharmacogenetic analysis, pathological polymorphisms were revealed in Nudix hydrolase 15 (NUDT15), which may explain the patient’s myelotoxicity. Hence, a pharmacogenetic analysis performed in advance would have been able to prevent her from suffering severe toxicity and/or treatment failure.

Downloads

Download data is not yet available.

References

Lopez-Lopez E, Gutierrez-Camino A, Bilbao-Aldaiturriaga N, Pombar-Gomez M, Martin-Guerrero I, Garcia-Orad A. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics. 2014 Jul;15(10):1383-98. DOI: 10.2217/pgs.14.106

Lennard L, Cartwright CS, Wade R, Vora A. Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: the influence of thiopurine methyltransferase pharmacogenetics. Br J Haematol. 2015;169(2):228-40. DOI: 10.1111/bjh.13240.

Maamari D, El-Khoury H, Saifi O, Muwakkit SA, Zgheib NK. Implementation of Pharmacogenetics to Individualize Treatment Regimens for Children with Acute Lymphoblastic Leukemia. Pharmgenomics Pers Med. 2020;13:295-317. DOI: 10.2147/PGPM.S239602

Bernsen EC, Hagleitner MM, Kouwenberg TW, Hanff LM. Pharmacogenomics as a Tool to Limit Acute and Long-Term Adverse Effects of Chemotherapeutics: An Update in Pediatric Oncology. Front Pharmacol. 2020;11:1184. DOI: 10.3389/fphar.2020.01184.

Dorababu P, Nagesh N, Linga VG, Gundeti S, Kutala VK, Reddanna P, Digumarti R. Epistatic interactions between thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) variations determine 6-mercaptopurine toxicity in Indian children with acute lymphoblastic leukemia. Eur J Clin Pharmacol. 2012;68(4):379-87. DOI: 10.1007/s00228-011-1133-1.

Schmiegelow K, Nielsen SN, Frandsen TL, Nersting J. Mercaptopurine/Methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: clinical facts and fiction. J Pediatr Hematol Oncol. 2014;36(7):503-17. DOI: 10.1097/MPH.0000000000000206.

Yang JJ, Landier W, Yang W, Liu C, Hageman L, Cheng C, Pei D, Chen Y, Crews KR, Kornegay N, Wong FL, Evans WE, Pui CH, Bhatia S, Relling MV. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33(11):1235-42. DOI: 10.1200/JCO.2014.59.4671.

Yin D, Xia X, Zhang J, Zhang S, Liao F, Zhang G, Zhang Y, Hou Q, Yang X, Wang H, Ma Z, Wang H, Zhu Y, Zhang W, Wang Y, Liu B, Wang L, Xu H, Shu Y. Impact of NUDT15 polymorphisms on thiopurines-induced myelotoxicity and thiopurines tolerance dose. Oncotarget. 2017;8(8):13575-13585. DOI: 10.18632/oncotarget.14594.

Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, Stein CM, Moyer AM, Evans WE, Klein TE, Antillon-Klussmann FG, Caudle KE, Kato M, Yeoh AEJ, Schmiegelow K, Yang JJ. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin Pharmacol Ther. 2019;105(5):1095-1105. DOI: 10.1002/cpt.1304.

Centro de Información de Medicamentos (CIMA) de la AEMPS [Internet]. Ficha Técnica Mercaptopurina - [cited 2023 Mar 30]. Available from: https://cima.aemps.es/cima/publico/home.html

Downloads

Published

2023-06-20

How to Cite

1.
Pineda-Lancheros LE, Sánchez-Suárez M del M, Marangoni-Iglecias LM, García-Fumero R, Rojo-Tolosa S, Moreno-Toro N. Impact of the homozygous mutation in Nudix hydrolase 15 on myelosuppression with 6-mercaptopurine in a European girl with acute lymphoblastic leukemia: A case report. Ars Pharm [Internet]. 2023 Jun. 20 [cited 2025 Jan. 15];64(3):286-91. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/27769

Issue

Section

Clinical Notes