Advances in antiseptic formulations
DOI:
https://doi.org/10.30827/ars.v62i4.21804Keywords:
Antiseptics; pharmaceutical form; nanoparticles; SEDDS, film-forming systemsAbstract
Objective: To review new antiseptic formulations that minimize the drawbacks of conventional formulations and improve the effectiveness of currently used treatments.
Methodology: A bibliographic search was carried out in different scientific databases, such as Pubmed or Sciencedirect, among others, as well as in articles of scientific journals, books, doctoral theses and official web pages, always following previously established inclusion and exclusion criteria. Once the articles of interest had been selected using keywords, the contents of the review were organized.
Results: The conventional formulations used in antisepsis have some limitations, such as the formation of biofilms by methicillin-resistant Staphylococcus aureus (MRSA), the need to achieve a more prolonged effect over time and the potentiation of microbial activity due to resistance to antiseptics, among others. For this reason, there are several lines of research that attempt to counteract these barriers by designing new formulations such as self-emulsifying drug delivery systems (SEDDS), film-forming systems or using nanotechnology in the form of antiseptic-loaded micelles, mesoporous organosilica nanoparticles or as silver or ZnO nanoparticles that are combined with polymers such as hydrogels or polyurethanes to achieve more effective treatments by improving both their antiseptic and mechanical properties.
Conclusions: The different strategies discussed in this review present better antiseptic properties than conventional therapies, as reported in the articles reviewed. For this reason, they will surely be part of the wide range of antiseptics in the near future.
Downloads
References
Araujo-Rodríguez FJ, Encinas-Barrios C, Araujo-O`Reilly FJ, Torres MA. Asepsia y Antisepsia. Visión histórica desde un cuadro. 2011; 2:61-64.
Jácome-Roca A. Historia de los medicamentos. 2ª ed. Colombia: EAE; 2008.
Daniels IR. Historical perspectives on health. Semmelweis: a lesson to relearn? J R Soc Promot Health. 1998; 118(6):367-370. doi: 10.1177/146642409811800617.
Fu Kuo-Tai L. Great names in the history of orthopaedics XIV: Joseph Lister (1827-1912) Part 1. J Orthop Trauma Rehabil. 2010; 14:30-38. https://doi.org/10.1016/j.jotr.2010.08.004
Benedí J. Antisépticos. Farm Prof. 2005; 19(8):58-61.
Arévalo JM, Arribas JL, Hernández MJ, Herruzo ML. Guía de utilización de antisépticos. MPR. 2000:1-11.
Bilbao N. Antisépticos y desinfectantes. Farm Prof. 2009; 23(4):37-39.
González L. Antisépticos y desinfectantes. Offarm. 2003; 22(3):64-70.
Pontificia Universidad Católica de Chile. Escuela de Enfermería. Manejo de Heridas. Antisépticos y desinfectantes [en línea]. [Consultado en marzo 2020]. Disponible en: http://www6.uc.cl/manejoheridas/html/antiseptico.html
Del Río-Carbajo L, Vidal-Cortés P. Tipos de antisépticos, presentaciones y normas de uso. Med Intensiva. 2019; 43:7-12. DOI: 10.1016/j.medin.2018.09.013.
Divins M. Información de Mercado, Antisépticos. Farm Prof. 2017; 31(5):6-9.
Diomedi A, Chacón E, Delpiano L, Hervé B, Jemenao MI, Medel M, et al. Antisépticos y desinfectantes: apuntando al uso racional. Recomendaciones del Comité Consultivo de Infecciones Asociadas a la Atención de Salud, Sociedad Chilena de Infectología. Rev Chil Infectología. 2017; 34:156-174. http://dx.doi.org/10.4067/S0716-10182017000200010.
López-González L, Gutiérrez-Pérez MI, Lucio-Villegas-Menéndez ME, Aresté-Lluch N, Morató Agustí ML, Cachafeiro-Pérez S. Introducción a los antisépticos. Aten Prim. 2014; 46:1-9.
Font E. Antisépticos y desinfectantes. Offarm. 2001; 20(2):55-63.
Russell AD. Bacterial adaptation and resistance to antiseptics, disinfectants and preservatives is not a new phenomenon. J Hosp Infect. 2004; 57:97-104. DOI: 10.1016/j.jhin.2004.01.004
Nakahara H, Kozukue H. Isolation of chlorhexidine-resistant Pseudomonas aeruginosa from clinical lesions. J Clin Microbiol 1982; 15:166-168. Doi:10.1128/jcm. 15.1.166-168.1982
Martin DJ, Denyer SP, McDonnell G, Maillard JY. Resistance and cross-resistance to oxidizing agents of bacterial isolates from endoscope washer disinfectors. J Hosp Infect. 2008; 69:377-383. doi: 10.1016/j.jhin.2008.04.010.
Vigeant P, Loo VG, Bertran C, Dixon C, Hollis M, Pfaller A, et al. An outbreak of Serratia marcescens infections related to contaminated chlorhexidine. Infect Control Hosp Epidemiol. 1998; 19:791-794. doi: 10.1086/647728.
Lee AS, Macedo-Vinas M, Francois P, et al. Impact of combined low-level mupirocin and genotypic chlorhexidine resistance on persistent methicillin-resistant Staphylococcus aureus carriage after decolonization therapy: a case et control study. Clin Infect Dis. 2011; 52:1422-1430. doi: 10.1093/cid/cir233.
Jalil A, Asim MH, Akkus ZB, Schoenthaler M, Matuszczak B, Bernkop-Schnürch A. Self-emulsifying drug delivery systems comprising chlorhexidine and alkyl-EDTA: A novel approach for augmented antimicrobial activity. J Mol Liq. 2019; 295:1-8. DOI: 10.1016/j.molliq.2019.111649
Harbarth S, Tuan Soh S, Horner C, Wilcox MH. Is reduced susceptibility to disinfectants and antiseptics a risk in healthcare settings? A point/counterpoint review. J Hosp Infect. 2014; 87:194-202.
Kathe K, Kathpalia H. Film forming systems for topical and transdermal drug delivery. Asian J Pharm Sci. 2017; 12:487-497. https://doi.org/10.1016/j.ajps.2017.07.004
He Y, Zhang Y, Sun M, Yang C, Zheng X, Shi C, et al. One-pot synthesis of chlorhexidine-templated biodegradable mesoporous organosilica nanoantiseptics. Colloids Surfaces B Biointerfaces. 2020; 187:1-7. DOI: 10.1016/j.colsurfb.2019.110653
Albayaty YN, Thomas N, Hasan S, Prestidge CA. Penetration of topically used antimicrobials through Staphylococcus aureus biofilms: a comparative study using different models. J Drug Deliv Sci Technol. 2018; 48:429-436. DOI: 10.1016/j.jddst.2018.10.015
Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, MansooriMoghadam Z. Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol. 2018; 114:1203-1215. doi:10.1016/j.ijbiomac.2018.04.010.
Nagalakshmi S, Bhavishi G, Anusha M, Asha M, Gani A, Shanmuganathan S. Fabrication and Characterization of Chitin Hydrogel Nano Silver Fused Scaffold for Wound Dressing Applications. IJPER. 2020; 54(3): 610-617. DOI: 10.5530/ijper.54.3.110
Kucinska-Lipka J, Gubanska I, Lewandowska A, Terebieniec A, Przybytek A, Cie´slinski H. Antibacterial polyurethanes, modifid with cinnamaldehyde, as potential materials for fabrication of wound dressings, Polym Bull. 2018; 76(6): 2725-2742. https://doi.org/10.1007/s00289-018-2512-x
Flores FC, de Lima JA, Ribeiro RF, Alves SH, Rolim CMB, Beck RCR, et al. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of trichophyton rubrum. Mycopathologia. 2013; 175:281-286. https://doi.org/10.1007/s11046-013-9622-7
Flores FC, De Lima JA, Da Silva CR, Benvegnu D, Ferreira J, Burger ME, et al. Hydrogels containing nanocapsules and nanoemulsions of tea tree oil provide antiedematogenic effect and improved skin wound healing. J Nanosci Nanotechnol. 2015; 15:800-809. https://doi.org/10.1166/jnn.2015.9176
Chiriac AP, Rusu AG, Nita LE, Macsim AM, Tudorachi N, Rosca I, et al. Synthesis of Poly(Ethylene Brassylate-Co-squaric Acid) as Potential Essential Oil Carrier. Pharmaceutics. 2021; 13:453-477. https://doi.org/10.3390/pharmaceutics13040477
Hamedi H, Moradi S, Tonelli AE, Hudson SM. Preparation and characterization of chitosan–alginate polyelectrolyte complexes loaded with antibacterial thyme oil nanoemulsions. Appl Sciences. 2019; 9(18):3933. https://doi.org/10.3390/app9183933
Sinha P, Srivastava S, Mishra N, Singh DK, Luqman S, Chanda D, et al. Development, optimization, and characterization of a novel tea tree oil nanogel using response surface methodology. Drug Dev Ind Pharm. 2016; 42:1434-1445. https://doi.org/10.3109/03639045.2016.1141931
De Marchi JGB, Jornada DS, Silva FK, Freitas AL, Fuentefria AM, Pohlmann AR, et al. Triclosan resistance reversion by encapsulation in chitosan-coated-nanocapsule containing α-bisabolol as core: Development of wound dressing. Int J Nanomed. 2017; 12:7855-7868. doi: 10.2147/IJN.S143324
Davachi SM, Kaffashi B. Preparation and Characterization of Poly L-Lactide/Triclosan Nanoparticles for Specific Antibacterial and Medical Applications. Int J Polym Mater. 2015; 6:497–508. https://doi.org/10.1080/00914037.2014.977897
Wais U, Nawrath MM, Jackson AW, Zhang H. Triclosan nanoparticles via emulsion-freeze-drying for enhanced antimicrobial activity. Colloid Polym Sci. 2018, 296:951-960. https://doi.org/10.1007/s00396-018-4312-0
Domínguez-Delgado CL, Rodríguez-Cruz IM, Escobar-Chávez JJ, Calderón-Lojero IO, Quintanar-Guerrero D, Ganem, A. Preparation and characterization of triclosan nanoparticles intended to be used for the treatment of acne. Eur J Pharm Biopharm. 2011; 79:102-107. https://doi.org/10.1016/j.ejpb.2011.01.017
Hoang TPN, Ghori MU, Conway BR. Topical Antiseptic Formulations for Skin and Soft Tissue Infections. Pharmaceutics. 2021: 13;527-558.https://doi.org/10.3390/pharmaceutics13040558
López-González L, Gutiérrez-Pérez MI, Lucio-Villegas-Menéndez ME, Aresté-Lluch N, Morató, Agustí ML, Cachafeiro-Pérez S. Introducción a los antisépticos. Aten Prim. 2014; 46:1-9. DOI: 10.1016/S0212-6567(14)70055-1
Verzì AE, Nasca MR, Dall’Oglio F, Cosentino C, Micali G. A novel treatment of intertrigo in athletes and overweight subjects. J Cosmet Dermatol. 2021;20(1):23-27. doi:10.1111/jocd.14097
Lasa I, Del Pozo JL, Penadés JR, Leiva J. Biofilms bacterianos e infección. Anales Sis San Navarra. 2005; 28(2):163-175.
Miller KP, Wang L, Benicewicz BC, Decho AW. Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev. 2015; 44:7787-7807. https://doi.org/10.1039/C5CS00041F
Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles, Trends Biotechnol. 2012; 30 :499-511. https://doi.org/10.1016/j.tibtech.2012.06.004
Chang ZM, Wang Z, Lu MM, Shao D, Yue J, Yang D, et al. Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids Surf B Biointerfaces. 2017; 157:199-206. https://doi.org/10.1016/j.colsurfb.2017.05.079
Álvarez-Lorenzo C, Concheiro A, Sosnik A. Micelas poliméricas para encapsulación, vectorización y cesión de fármacos. En: Álvarez-Lorenzo C, Concheiro A, Sosnik A, editores. Biomateriales aplicados al diseño de sistemas terapéuticos avanzados. Coimbra: Pombalina University press; 2020. p.183-217. DOI: http://dx.doi.org/10.14195/978-989-26-0881-5_5
Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, et al. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. NRL. 2014; 9(1):2406-2417. DOI: 10.1186/1556-276X-9-684
Bhuptani RS, Jain AS, Makhija DT, Jagtap AG, Hassan PAR, Nagarsenker MS. Soluplus based polymeric micelles and mixed micelles of lornoxicam: design, characterization and in vivo efficacy studies in Rats. IJPER. 2016; 50(2):277-286. doi:10.5530/ijper.50.2.8
Elsässer B, Schoenen I, Fels G. Comparative theoretical study of the ringopening polymerization of caprolactam vs caprolactone using QM/MM methods. ACS Catal. 2013; 3:1397-1405. https://doi.org/10.1021/cs3008297
Takahashi C, Saito S, Suda A, Ogawa N, Kawashima Y, Yamamoto H. Antibacterial activities of polymeric poly (DL-lactide-co-glycolide) nanoparticles and Soluplus® micelles against Staphylococcus epidermidis biofilm and their characterization. RSC Adv. 2015; 5:71709-71717. https://doi.org/10.1039/C5RA13885J
Wegmann M, Parola L, Bertera FM, Taira C, Cagel M, Buontempo F, et al. Novel carvedilol paediatric nanomicelle formulation: in vitro characterization and in vivo evaluation. J Pharm Pharmacol. 2017; 69(5):544-553.
Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed: Nanotechnol Biol Med. 2015; 11:313-327. DOI: 10.1016/j.nano.2014.09.014
Guisasola-Cal E. Nanotransportadores basados en sílice mesoporosa para tratamiento antitumoral. [Tesis doctoral]. Madrid: Universidad Complutense de Madrid; 2016.
Shao D, Li M, Wang Z, Zheng X, Lao YH, Changet Z, et al. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Adv Mater. 2018; 30(29):1-8. https://doi.org/10.1002/adma.201801198
Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013; 42(9):3862-3875. https://doi.org/10.1039/C3CS35405A
Stewart CA, Finer Y, Hatton BD. Drug self-assembly for synthesis of highly loaded antimicrobial drug-silica particles. Sci Rep -UK. 2018; 8:895-907. https://doi.org/10.1038/s41598-018-19166-8
Yang H, Wang S, Han L, Peng W, Yi L, Guo R, et al. Chlorhexidine-encapsulated mesoporous silica modified dentin adhesive. J Dent. 2018; 78, 83-90. DOI: 10.1016/j.jdent.2018.08.012
Zhang J, Wu R, Fan Y, Liao S, Wang Y, Wen Z, et al. Antibacterial dental composites with chlorhexidine and mesoporous silica. J Dent Res. 2014; 93:1283-1289. DOI: 10.1177/0022034514555143
Lu MM, Ge Y, Qiu J, Shao D, Zhang Y, Bai J, et al. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Int J Nanomedicine. 2018; 13:7697-7709. DOI: 10.2147/IJN.S181168
Umerska A, Strandh M, Cassisa V, Matougui N, Eveillard M, Saulnier P. Synergistic effect of combinations containing EDTA and the antimicrobial peptide AA230, an arenicin-3 derivative, on gram-negative Bacteria. Biomolecules. 2018; 8(4):122-135. doi: 10.3390/biom8040122
Loretz, B, Bernkop-Schnürch A. In vitro evaluation of chitosan-EDTA conjugate polyplexes as a nanoparticulate gene delivery system. AAPS J. 2006; 8:756-764. DOI: 10.1208/aapsj080485
Zhang R, Chen M, Lu Y, et al. Antibacterial and residual antimicrobial activities against Enterococcus faecalis biofilm: A comparison between EDTA, chlorhexidine, cetrimide, MTAD and QMix. Sci Rep. 2015;5(12944):1-5. https://doi.org/10.1038/srep12944
Rasimick BJ, Nekich M, Hladek MM, Musikant BL, Deutsch AS. Interaction between chlorhexidine digluconate and EDTA. J Endod. 2008; 34(12):1521-1524. DOI: 10.1016/j.joen.2008.08.039
Griesser J, Hetényi G, Kadas H, Demarne F, Jannin V, Bernkop-Schnürch A. Self-emulsifying peptide drug delivery systems: How to make them highly mucus permeating. Int J Pharm. 2018; 538(1-2):159-166. DOI: 10.1016/j.ijpharm.2018.01.018
Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: theory and in vitro experimental measurement. AIChE J. 1975; 21(5):985-996.
Dhiman S, Singh GT, Rehni AK. Transdermal patches: a recent approach to new drug delivery system. Int J Pharm Pharm Sci. 2011;3(5):26-34.
Bajaj H, Kumar T, Singh V. Film forming gels: a review. Res J Pharm Biol Chem Sci. 2016; 7(4):2085-2091.
Rath G, Hussain T, Chauhan G, Garg A, Goyal AK. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nano fiber mats for postoperative surgical wounds, Mater Sci Eng C. 2016; 58:242-253. https://doi.org/10.1016/j.msec.2015.08.050
Pandharipande SL, Bhagat PH. Synthesis of chitin from crab shells and its utilization in preparation of nanostructured film. Synthesis. 2016; 5(5):1378-1383.
Carhuapoma W, Santiago J, Caracterización de hidrogeles de Quitosano-Alcohol Polivinílico obtenidos por radiación gamma. Reviberpol. 2005; 6(4):333-346.
Kumar PTS, Lakshmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, et al. Flexible and microporous chitosan hydrogel/nanoZnO composite bandages for wound dressing: in vitro and in vivo evaluation, ACS Appl. Mater. Interfaces. 2012; 4:2618-2629. https://doi.org/10.1021/am300292v.
Vicentini DS, Smania A., Laranjeira MCM. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng C. 2010; 30:503-508. https://doi.org/10.1016/j.msec.2009.01.026.
Lapeña Luzón T. Desarrollo de un scaffold celular para un modelo de lesión medular. [Trabajo final de grado]. Valencia: Universitat Politècnica de València; 2017.
Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S. Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci. 2012; 12(3):286-311.
Rai V, Dilisio MF, Dietz NE, Agrawal, DK. Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering. J Biomed Mat Res Part A. 2017; 105(8):2343-2354.
Arán Aís F. Síntesis y caracterización de poliuretanos termoplásticos que contienen resinas de colofonia y su aplicación como adhesivos. [Tesis doctoral]. Universidad de Alicante. Departamento de Química Inorgánica; 2000.
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioactive Materials. 2021; 6:1083-1106. https://doi.org/10.1016/j.bioactmat.2020.10.002
Grecka K, Szweda P. Synergistic Effects of Propolis Combined with 2-Phenoxyethanol and Antipyretics on the Growth of Staphylococcus aureus. Pharmaceutics. 2021: 13;198-215. https://doi.org/10.3390/pharmaceutics13020215
Downloads
Published
How to Cite
Issue
Section
License
The articles, which are published in this journal, are subject to the following terms in relation to the rights of patrimonial or exploitation:
- The authors will keep their copyright and guarantee to the journal the right of first publication of their work, which will be distributed with a Creative Commons BY-NC-SA 4.0 license that allows third parties to reuse the work whenever its author, quote the original source and do not make commercial use of it.
b. The authors may adopt other non-exclusive licensing agreements for the distribution of the published version of the work (e.g., deposit it in an institutional telematic file or publish it in a monographic volume) provided that the original source of its publication is indicated.
c. Authors are allowed and advised to disseminate their work through the Internet (e.g. in institutional repositories or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).