Secreted Frizzled – Related Protein 4 and breast cancer
DOI:
https://doi.org/10.30827/ars.v62i4.21740Keywords:
sFRP4; β – catenin; canonical; non – canonical; Frizzled; breast cancer.Abstract
Introduction: cell’s correct functionality and surveillance are brokered by a wide range of essential proceedings. The delicate equilibrium required between those phenomenon means that an error in the control mechanisms provoke the carcinogenesis commencement. In those metabolic pathways in charge of controlling the mechanisms are found the Wnt signaling pathways. Therefore, molecules that interact with the pathways mentioned, where secreted Frizzled – Related Protein 4 is located, will play a key role in the pathology knowledge.
Method: a bibliographic research has been done in referral databases, such as Medline and Scopus.
Results: sFRP4 has been identified as a negative modulator of the Wnt signaling pathways. This is due to its capacity of competing for the Wnt ligands and avoiding the commencement of the pathways. Otherwise, sFRP4 is essential for the control of the cancer beginning and development in those tissues where the protein is expressed, being mammary tissues considered into them.
Conclusions: recent studies about the implications of sFRP4 in the development of several pathologies justify that the protein had garnered attention in recent years. Furthermore, it can be affirmed that sFRP4 presents an interesting potential as biomarker in the breast cancer treatment, diagnosis and prognosis, among other pathologies.
Downloads
References
Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signaling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol. 2019; 109:23–32. doi: 10.1016/j.biocel.2019.01.016
Granados-Principal S, Quiles JL, Ramírez-Tortosa C, et al. Hydroxytyrosol inhibits growth and cell proliferation and promotes high expression of sfrp4 in rat mammary tumours. Mol Nutr Food Res. 2011; 55(1):117–126. doi: 10.1002/mnfr.201000220
Pohl S, Scott R, Arfuso F, Perumal V, Dharmajaran A. Secreted frizzled – related protein 4 and its implications in cancer and apoptosis. Tumor Biol. 2014; 36(1):143–152. doi: 10.1007/s13277-014-2956-z
Vincent KM, Postovit L M. A pan – cancer analysis of secreted Frizzled – related proteins: re – examining their porposed tumour suppressive function. Sci Rep. 2017; 7:42719. doi: 10.1038/srep42719
Pawar NM, Rao P. Secreted frizzled – realted protein 4 (sFRP4) update: A brief review. Cell Signal. 2018; 45:63–70. doi: 10.1016/j.cellsig.2018.01.019
Vincent KM, Postovit LM. Matricellular proteins in cancer: a focus on secreted Frizzled – related proteins. J Cell Commun. 2018; 12(1):103–112. doi: 10.1007/s12079-017-0398-2
Yin P, Wang W, Zhang Z, Bai Y, Gao J, Zhao C. Wnt signaling in human and mouse breast cancer: Focusing on Wnt ligands, receptors and antagonists. Cancer Sci. 2018; 109(11):3368–3375. doi: 10.1111/cas.13771
Wu K, Li Z H, Yi W, et al. Restoration of secreted frizzled-related protein 1 suppresses growth and increases cisplatin sensitivity in laryngeal carcinoma cells by downregulating NHE 1. Int J Clin Exp Pathol. 2017; 10(8):8334–8343.
Baharudin R, Yew Fu Tieng F, Lee LH, Saykima Ab Mutalib N. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers. 2020; 12 (445):1–20. doi: 10.3390/cancers12020445
Yu J, XIe Y, Li M, et al. Association between SFRP promoter hypermethylation and different types of cancer: A systematic review and meta-analysis. Oncol Lett. 2019; 18(4):3481–3492. doi: 10.3892/ol.2019.10709
Liu Y, Zhou Q, Zhou D, Huang C, Meng X, Li J. Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep. 2017; 69(3):403–408. doi: 10.1016/j.pharep.2017.01.001
Huang C, Ye Z, Wan J, et al. Secreted Frizzled – Related Protein 2 Is Associated with Disease Progression and Poor Prognosis in Breast Cancer. Dis Markers. 2019:1– 8. doi: 10.1155/2019/6149381
Bernascone I, González T, Barea MD, et al. Sfrp3 modulates stromal-epithelial crosstalk during mammary gland development by regulating Wnt levels. Nat Commun. 2019; 10(1):1–17. doi: 10.1038/s41467-019-10509-1
Bravo D, Salduz A, Shogren KL, et al. Decreased local and systemic levels of sFRP3 protein in osteosarcoma patients. Gene. 2018; 674:1–7. doi: 10.1016/j.gene.2018.06.059
Claudel M, Jouzeau JY, Cailotto F. Secreted Frizzled – related proteins (sFRPs) in osteoarticular diseases: much more than simple antagonists of Wnt signaling? The FEBS J. 2019; 286(24):4832–4851. doi: 10.1111/febs.15119
Chen Y, Zou D, Wang N, et al. SFRP5 inhibits the migration and invasion of melanoma cells through Wnt signaling pathway. Onco Targets Ther. 2018; 11:8761–8772. doi: 10.2147/OTT.S181146
Xu Q, Lü Z, Wang X, Zhu Q, Wu H. Secreted frizzled – related protein 5 suppresses aggressive phenotype and reverses docetaxel resistance in prostate cancer. J Investig Med. 2019; 67(6):1009–1017. doi: 10.1136/jim-2018-000849
Lin HW, Fu C-F, Chang MC, et al. CDH1, DLEC1 and SFRP5 methylation panel as a prognostic marker for advanced epithelial ovarian cancer. Epigenomics. 2018; 10(11):1397–1413. doi: 10.2217/epi-2018-0035
Bukhari SA, Yasmin A, Zahoor MA, Mustafa G, Sarfraz I, Rasul A. Secreted frizzled – related protein 4 and its implication in obesity and type – 2 diabetes. Life. 2019; 71(11):1701–1710. doi: 10.1002/iub.2123
Azuma K, Zhou Q, Kubo K. Morphological and molecular characterization of the senile osteoporosis in senescence – accelerated mouse prone 6 (SAMP6). Med Mol Morphol. 2018; 51:139–146. doi: 10.1007/s00795-018-0188-9.
Bergmann K, Sypniewska G. Secreted frizzled – related protein 4 (SFRP4) and fractalkine (CX3CL1) – Potential new biomarkers for ß – cell dysfunction and diabetes. Clin Biochem. 2014; 47(7–8):529–532. doi: 10.1016/j.clinbiochem.2014.03.007
Gene: SFRP4 (ENSG00000106483) – Marked – up Sequence – Homo sapiens – Ensmbl Genome Browser 91. [monografía en Internet]. Granada: Ensembl.org.; 2021 [acceso 30 de marzo de 2021]. Disponible en: https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000106483;r=7:37905932-38025695.
Kitazawa S, Haraguchi R, Kitazawa R. Morphology – oriented epigenetic research. Histochem Cell Biol. 2018; 150(1):3–12. doi: 10.1007/s00418-018-1675-8
Carmon KS, Loose DS. SFRP4 (Secreted Frizzled – Related Protein 4). Atlas Genet Cytogenet Oncol Hematol. 2010; 14 (3): 296 – 300.
Perumal V, Krishnan K, Gratton E, Dharmarajan AM, Fox SA. Number and brightness analysis of sFRP4 domains in live cells demonstrates vesicle association signal of the NLD domain and dynamic intracellular responses to Wnt3a. Int J Biochem Cell Biol. 2015; 64:91–96. doi: 10.1016/j.biocel.2015.03.010
Wilson DH, Jarman EJ, Mellin RP, et al. Non – canonical Wnt signaling regulates scarring in biliary diasease via the planar cell polarity receptors. Nat Commun. 2020; 11(1):11–13. doi: 10.1038/s41467-020-14283-3
Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. The key role of proinflammatory cytokines, matrix proteins, RANKL/OPG and Wnt/β – catenin in bone healing of hip arthroplasty patients. Bone. 2017; 107:66–77. doi: 10.1016/j.bone.2017.11.004
Yang S, Wu Y, Xu TH, et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature. 2018; 560(7720):666–670. doi: 10.1038/s41586-018-0447-x
Nusse R, Clevers H. Wnt/beta – Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017; 169(6):985–999. doi: 10.1016/j.cell.2017.05.016
Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018; 145(11):1–8. doi: 10.1242/dev.146589
Galluzzi L, Spranger S, Fuchs E, López – Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol. 2019; 29 (1): 44 – 65. doi: 10.1016/j.critrevonc.2015.12.005
Chae W-J, Bothwell ALM. Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol. 2018; 39(10):830–847. doi: 10.1016/j.it.2018.08.006
van Schie EH, van Amerongen R. Aberrant Wnt/CTNNB1 Signaling as a Therapeutic Target in Human Breast Cancer: Weighing the Evidence. Front Cell Dev Biol. 2020; 8: 25. doi: 10.3389/fcell.2020.00025
Zhang S, Lin H, Kong S, et al. Physiological and molecular determinations of embryo implantation. Mol Asp Med. 2013; 34(5):939–980. doi: 10.1016/j.mam.2012.12.011
Gao C, Chen YG. Dishevelled: The hub of Wnt signaling. Cell Signal. 2010; 22(5):717–727. doi: 10.1016/j.cellsig.2009.11.021
Taciak B, Puszynska I, Kiraga L, Bialasek M, Krol M. Wnt signaling pathway in development and cancer. J Physiol Pharmacol. 2018; 96(2):185–196. doi: 10.26402/jpp.2018.2.07
van Andel H, Kocemba KA, Spaargaren M, Pals ST. Aberrant Wnt signaling in mulitple mieloma: molecular mechanism and targeting options. Leukemia. 2019; 33(5):1063–1075. doi: 10.1038/s41375-019-0404-1
Zhong Z, Virshup DM. Wnt Signaling and Drug Resistance in Cancer. Mol Pharmacol. 2020; 97(2):72–89. doi: 10.1124/mol.119.117978
Duchartre Y, Kim Y M, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016; 99:141–149.
Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 2017; 51(5):1357–1369. doi: 10.3892/ijo.2017.4129
Nishita M, Saji T, Minami Y. [Non – canonical Wnt signaling and celular responses]. Clin Calcium. 2019; 29(3):291–297. doi: 10.20837/4201903291
Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, et al. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell Signal. 2020; 72: 109636.
Amal H, Gong G, Gjoneska E, Lewis S M, Wishnok JS, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019; 9(1):44. doi: 10.1038/s41398-019-0388-7
Li X, Ortiz M A, Kotula L. The physiological role of Wnt pathway in normal development and cancer. Exp Biol Med. 2020; 245(5):411–426. doi: 10.1177/1535370220901683
Uehara S, Udagawa N, Kobayashi Y. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts. Cell Mol Life Sci. 2018; 75(20):3683–3692. doi: 10.1007/s00018-018-2881-1
Corda G, Sala A. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis. 2017;6(7):e364. doi: 10.1038/oncsis.2017.69
López-Escobar B, Caro-Vega JM, Vijayraghavan D S, et al. The non – canonical Wnt – PCP pathway shapes the mouse caudal neural plate. Developmet. 2018; 145(9):1–15. doi: 10.1242/dev.157487
Wang M, Marco P, Capra V, Kibar Z. Update on the Role of the Non-Canonical Wnt/Planar Cell Polarity Pathway in Neural Tube Defects. Cells. 2019; 8(10):1198. doi: 10.3390/cells8101198
Zhan T, Rindtorff N, Boutrons M. Wnt signaling in cancer. Oncogene. 2017; 36(11):1461–1473. doi: 10.1038/onc.2016.304
Mäkitie RE, Constantini A, Kämpe A, Alm JJ, Mäkitie O. New Insights Into Monogenic Causes of Osteoporosis. Front Endocrinol (Lausanne). 2019; 10: 70. doi: 10.3389/fendo.2019.00070
Mandal S, Gamit N, Varier L, Dharmarajan A, Warrier S. Inhibition of breast cancer stem – like cells by a triterpenoid, ursolic acid, via activation of Wnt antagonist, sFRP4 and suppression of miRNA – 499a – 5p. Life Sci. 2021; 265: 118854. doi: 10.1016/j.lfs.2020.118854
Awasthi A, Hande MH, Rao P, Srinivas T, Hanumaiah G. Association of Secreted Frizzled Related Protein 4 with Type 2 Diabetes Mellitus and its complications: A South Indian hospital based case control study. Clin Epidemiology Glob Health. 2021; 9:171–174. doi:10.1016/j.cegh.2020.08.009
Tharmapalan P, Mahendrahingam M, Berman H K, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J. 2019; 38(14):1–19. doi: 10.15252/embj.2018100852
Visweswaran M, Keane KN, Arfuso F, Dilley RJ, Newsholme P, Dharmarajan A. The Influence of Breast Tumor – Derived Factors and Wnt Antagonism on the transformation of Adiponse – Derived Mesenchymall Stem Cells Into Tumour – Associated Fibroblasts. Cancer Microenv. 2018; 11(1):71–84. doi: 10.1007/s12307-018-0210-8
Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Regulation of Cancer Stem Cells Metabolism by Secreted Frizzled – Related Protein 4 (sFRP4). Cancers. 2018; 10(2):40. doi: 10.3390/cancers10020040
Mashhadikhan M, Kheiri H, Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J Oral Biosci. 2020; 62(4):394–356. doi: 10.1016/j.job.2020.08.001
Li A, Schleicher SM, Andre F, Mitri ZI. Genomic Alteration in Metastasic Breast Cancer and Its Treatment. Am Soc Clin Oncol Educ Book. 2020; 40:1–14. doi: 10.1200/EDBK_280463
Testa V, Castelli G, Pelosi E. Breast Cancer: A Moleculary Heterogeneous Disease Needing Subtype – Specific Treatment. Med Sci. 2020; 8(1):18. doi: 10.3390/medsci8010018
Ayala de la Peña F, Andrés R, García-Sáenz JA, Manso L, Margelí M, et al. SEOM clinical guidelines in early stage breast cancer. Clin Transl Oncol. 2018; 21(1):18–30. doi: 10.1007/s12094-018-1973-6
Chacón López-Muñiz JI, de la Cruz Merino L, Gavilá Gregori J, et al. SEOM clinical guidelines in advanced and recurrent breast cancer. Clin Transl Oncol. 2018; 21(1):31–45. doi: 10.1007/s12094-018-02010-w
Deshmukh A, Kumar S, Arfuso F, Newsholme P, Dharmarajan A. Secreted Frizzled – Related Protein 4 (sFRP4) chemo – sensitizes cancer stem cells derived from human breast, prostate, and ovary human cell lines. Sci Rep. 2017; 7(1):2256. doi: 10.1038/s41598-017-02256-4
Cook D J, Kallus J, Jörnsten R, Nielsen J. Molecular natural history of breast cancer: Leveraging transcriptomics to predict breast cancer progression and aggressiveness. Cancer Med. 2020; 9(10):3551–3562. doi: 10.1002/cam4.2996
Bhuvanalakshmi G, Basappa, Rangappa KS, et al. Breast Cancer Stem – Like Cells Are Inhibited by Diosgenin, a Steroida Saponin, by the Attenuation of Wnt β – catenin Signaling via the Wnt Antagonist Secreted Frizzled Related Protein – 4. Front Pharmacol. 2017; 8:124. doi: 10.3389/fphar.2017.00124
Downloads
Published
How to Cite
Issue
Section
License
The articles, which are published in this journal, are subject to the following terms in relation to the rights of patrimonial or exploitation:
- The authors will keep their copyright and guarantee to the journal the right of first publication of their work, which will be distributed with a Creative Commons BY-NC-SA 4.0 license that allows third parties to reuse the work whenever its author, quote the original source and do not make commercial use of it.
b. The authors may adopt other non-exclusive licensing agreements for the distribution of the published version of the work (e.g., deposit it in an institutional telematic file or publish it in a monographic volume) provided that the original source of its publication is indicated.
c. Authors are allowed and advised to disseminate their work through the Internet (e.g. in institutional repositories or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).