Comparative study of in vitro activities of polymyxin B commercial products on Pseudomonas aeruginosa isolated from hospitalized patients

Authors

  • Rezvan Goodarzi Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
  • Farhad Farahani Hearing Impairment Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
  • Mahdane Roshani Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
  • Mohammad Taheri Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
  • Babak Asghari Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

DOI:

https://doi.org/10.30827/ars.v62i3.17851

Keywords:

Pseudomonas aeruginosa, Polymyxin B products, Broth microdilution method

Abstract

Introduction: Polymyxin B has been applied as one of the last-resort antibiotics for the treatment of multidrug resistance among Gram-negative bacterial infections. Due to side effects such as renal toxicity, the use of polymyxin is associated with limitations. The present study evaluates in vitro antibacterial activity of a number of polymyxin B commercial products against Pseudomonas aeruginosa.

Methods: This study included 63 non-duplicated P. aeruginosa isolates examined for in vitro polymyxin B susceptibility testing using the following powder disks: polymyxin B sulfate, otosporin, Poly-Mxb, and Myxacort. MIC50 and MIC90 have also been identified for polymyxin B antibiotics.

Results: Myxacort had functional activity against most P. aeruginosa isolates, and only seven isolates had a relatively high MIC. The activities of Poly-MXb and Myxacort were the same as otosporin.

Conclusions: Our findings revealed that the national generic polymyxin B product (Myxacort), and two external products (Otosporin, Poly-MXb) are similar in terms of microbiological activity.

Downloads

Download data is not yet available.

References

Cerceo E, Deitelzweig SB, Sherman BM, Amin AN. Multidrug-resistant gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options. Microb Drug Resist 2016; 22(5): 412-31. doi: 10.1089/mdr.2015.0220

Velkov T, Thompson PE, Nation RL, Li J. Structure activity relationships of polymyxin antibiotics. J Med Chem 2010; 53(5): 1898-916. doi: 10.1021/jm900999h.

Karaiskos I, Lagou S, Pontikis K, Rapti V, Poulakou G. The “old” and the “new” antibiotics for MDR gram-negative pathogens: for whom, when, and how. Front Public Health 2019; 7: 151. doi: 10.3389/fpubh.2019.00151

Zhang L, Dhillon P, Yan H, Farmer S, Hancock RE. Interactions of Bacterial Cationic Peptide Antibiotics with Outer and Cytoplasmic Membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000; 44(12): 3317-21. doi: 10.1128/aac.44.12.3317-3321.2000.

Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encodedby Plasmids or Chromosomes. Clin Microbiol Rev 2017; 30(2): 557-96. doi: 10.1128/CMR.00064-16.

Li Z, Cao Y, Yi L, Liu JH, Yang Q. Emergent Polymyxin Resistance: End of an Era? Open Forum Infect Dis 2019 Oct 1; 6(10). pii: ofz368. doi: 10.1093/ofid/ofz368

Garg SK, Singh O, Juneja D, et al. Resurgence of polymyxin B for MDR/XDR gram-negative infections: An overview of current evidence. Crit Care Res Pract 2017; 2017: 3635609. doi: 10.1155/2017/3635609

Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 2018; 36(1): 22-32. doi: 10.1002/jor.23656

Velkov T, Roberts KD, Nation RL, Thompson PE, Li J. Pharmacology of polymyxins: new insights into an ‘old’class of antibiotics. Future Microbiol 2013; 8(6): 711-24. doi: 10.2217/fmb.13.39

Hermsen ED, Sullivan CJ, Rotschafer JC. Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications. Infect Dis Clin North Am 2003; 17(3): 545-62. doi: 10.1016/s0891-5520(03)00058-8.

Dafale NA, Semwal UP, Rajput RK, Singh GN. Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance. J Pharm Anal 2016; 6(4): 207-13. doi: 10.1016/j.jpha.2016.05.006

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. Wayne (PA): Clinical and Laboratory Standards Institute, 2018.

Krishnamurthy M, Lemmon MM, Falcinelli EM, Sandy RA, Dootz JN, Mott TM, Rajamani S, Schaecher KE, Duplantier AJ, Panchal RG. Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug. Infection and drug resistance. 2019;12:1393. doi: 10.2147/IDR.S196874.

Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Frontiers in microbiology. 2014;5:643. doi: 10.3389/fmicb.2014.00643.

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet infectious diseases. 2016;16(2):161-8. doi: 10.1016/S1473-3099(15)00424-7

Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48(Suppl 1): 5-16. doi: 10.1093/jac/48.suppl_1.5.

Sader HS, Rhomberg PR, Flamm RK, Jones RN. Use of a surfactant (polysorbate 80) to improve MIC susceptibility testing results for polymyxin Band colistin. Diagn Microbiol Infect Dis 2012; 74(4): 412-4. doi: 10.1016/j.diagmicrobio.2012.08.025

Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18. doi: 10.1179/2047773215Y.0000000030

Chojnacki M, Philbrick A, Wucher B, et al. Development of a broad-spectrum antimicrobial combination for the treatment of Staphylococcus aureus and Pseudomonas aeruginosa corneal infections. Antimicrob Agents Chemother 2018; 63(1): e01929-18. doi: 10.1128/AAC.01929-18.

Doi Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin Infect Dis 2019; 69 (Suppl 7): S565-S575. doi: 10.1093/cid/ciz830. Simar S, Sibley D, Ashcraft D, Pankey G. Colistin and polymyxin b minimal inhibitory concentrations determined by etest found unreliable for gram-negative bacilli. Ochsner J 2017; 17(3): 239-42. doi: 10.1043/1524-5012-17.3.239

Turlej-Rogacka A, Xavier BB, Janssens L, et al. Evaluation of colistin stability in agar and comparison of four methods for MIC testing of colistin. Eur J Clin Microbiol Infect Dis 2018; 37(2): 345-53. doi: 10.1007/s10096-017-3140-3.

Doymaz MZ, Karaaslan E. Comparison of antibacterial activities of polymyxin B and colistin against multidrug resistant Gram negative bacteria. Infect Dis (Lond) 2019; 51(9): 676-82. doi: 10.1080/23744235.2019.1640386.

Ezadi F, Ardebili A, Mirnejad R. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations. Journal of clinical microbiology. 2019;57(4). doi: 10.1128/JCM.01390-18

Jerke KH, Lee MJ, Humphries RM. Polymyxin susceptibility testing: a cold case reopened. Clinical Microbiology Newsletter. 2016;38(9):69-77. doi:10.1016/j.clinmicnews.2016.04.003

http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf.

Gales AC, Jones RN, Sader HS. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001–2004). Clinical microbiology and infection. 2006;12(4):315-21. doi: 10.1111/j.1469-0691.2005.01351.x.

Wilhelm CM, Nunes LD, Martins AF, Barth AL. In vitro antimicrobial activity of imipenem plus amikacin or polymyxin B against carbapenem-resistant Pseudomonas aeruginosa isolates. Diagnostic microbiology and infectious disease. 2018;92(2):152-4. doi: 10.1016/j.diagmicrobio.2018.05.004.

Kvitko CH, Rigatto MH, Moro AL, Zavascki AP. Polymyxin B versus other antimicrobials for the treatment of Pseudomonas aeruginosa bacteraemia. Journal of Antimicrobial Chemotherapy. 2011;66(1):175-9. doi: 10.1093/jac/dkq390

Downloads

Published

2021-06-21

How to Cite

1.
Goodarzi R, Farahani F, Roshani M, Taheri M, Asghari B. Comparative study of in vitro activities of polymyxin B commercial products on Pseudomonas aeruginosa isolated from hospitalized patients. Ars Pharm [Internet]. 2021 Jun. 21 [cited 2024 Aug. 24];62(3):270-9. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/17851

Issue

Section

Original Articles