Design of crossed and nested Gauge R&R studies for the validation of the Heckel and Ryshkewitch-Duckworth mathematical models

Authors

  • Luz Maria Melgoza Contreras Universidad Autónoma Metropolitana, Departamento de Sistemas Biológicos, Coyoacán, Ciudad de México https://orcid.org/0000-0001-5509-6415
  • Oswaldo Castañeda Hernández Universidad Autónoma Metropolitana, Doctorado en Ciencias Biológicas y de la Salud, Departamento de Sistemas Biológicos, Coyoacán, Ciudad de México
  • Isidoro Caraballo Rodríguez Universidad de Sevilla, Facultad de Farmacia, Departamento de Farmacia y Tecnología Farmacéutica, Sevilla
  • María Josefa Bernad Bernad Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Coyoacán, Ciudad de México

DOI:

https://doi.org/10.30827/ars.v62i2.17734

Keywords:

Measurement system validation, variation, crossed Gauge R&R, nested Gauge R&R, analysis of variance

Abstract

Introduction: Gauge studies allow gaining information about the performance of processes and are very useful tools for quality control and identification of variability sources. The objective of the present study was design and analyzes measurement systems for the Heckel and Ryshkewitch-Duckworth models for characterizing materials, through Gauge R&R studies.

Method: Crossed Gauge R&R study for the evaluation of weight measurement system and nested Gauge R&R study for the system of tablet hardness.

Results: Both studies fulfilled with the assumptions of normality, constant variance and data independence, therefore it was possible to estimate the significance of variation sources (factors) through ANOVA and their contribution percentage. The crossed Gauge R&R study showed that the flat punches contributed to variability of the measurement in a significant manner in 97.38% of the total variation of the study; operators did it in less than 1% and they were not statistically significant and there was no Part-Operator interaction. With respect to the nested Gauge R&R study, it was found that the operator did not influence in a statistically significant way in the variability of the measurement and it was attributable in 95% to the existing differences between the tablets evaluated.

Conclusions: Design, run and analysis of the measurement systems was performed, we remark that in both of the studies the main source of variability were the parts evaluated and that operators did not contribute to variability in the measurements; therefore, both studies could be used to evaluate the Heckel and Ryshkewitch-Duckworth mathematical models and also for statistical process control.

Downloads

Download data is not yet available.

Author Biography

Luz Maria Melgoza Contreras, Universidad Autónoma Metropolitana, Departamento de Sistemas Biológicos, Coyoacán, Ciudad de México

Departamento de Sistemas Biológicos

Profesor Titular C

References

Klevan I, Nordström J, Tho I, Alderborn G. A statistical approach to evaluate the potential use of compression parameters for classification of pharmaceutical powder materials. Eur J Pharm Biopharm. 2010;75(3):425-435. doi:10.1016/j.ejpb.2010.04.006

Roberts RJ, Rowe RC. Brittle/ductile behaviour in pharmaceutical materials used in tabletting. Int J Pharm. 1987;36(2-3):205-209. doi:10.1016/0378-5173(87)90157-8

ICH Expert Working Group. Pharmaceutical Development. Vol 4. (ICH, ed.). International Conference on Harmonisation; 2009:i-24. doi:10.1016/B978-0-12-802103-3.00003-1

Hüttenrauch R, Fricke S, Zielke P. Mechanical Activation of Pharmaceutical Systems. Pharm Res. 1985;2(6):302-306. doi:10.1023/A:1016397719020

United States Pharmacopeial Convention. <1062> Tablet Compression Characterization. In: Convention U, ed. United States Pharmacopeia and National Formulary 41. 41st ed. United States Pharmacopeial Convention; 2017.

Nordström J, Klevan I, Alderborn G. A protocol for the classification of powder compression characteristics. Eur J Pharm Biopharm. 2012;80(1):209-216. doi:10.1016/j.ejpb.2011.09.006

Denny PJ. Compaction equations: A comparison of the Heckel and Kawakita equations. Powder Technol. 2002;127(2):162-172. doi:10.1016/S0032-5910(02)00111-0

Ryshkewitch E. Compression Strength of Porous Sintered Alumina and Zirconia: 9th Communication to Ceramography. J Am Ceram Soc. 1953;36(2):65-68. doi:10.1111/j.1151-2916.1953.tb12837.x

Duckworth W. Discussion of Ryshkewitch Paper. J Am Ceram Soc. 1953;36(2):68. doi:10.1111/j.1151-2916.1953.tb12838.x

Kuentz M, Leuenberger H. A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance. Eur J Pharm Biopharm. 2000;49(2):151-159. doi:10.1016/S0939-6411(99)00078-8

Patel S, Kaushal AM, Bansal AK. Effect of particle size and compression force on compaction behavior and derived mathematical parameters of compressibility. Pharm Res. 2007;24(1):111-124. doi:10.1007/s11095-006-9129-8

Arndt OR, Kleinebudde P. Towards a better understanding of dry binder functionality. Int J Pharm. 2018;552(1-2):258-264. doi:10.1016/j.ijpharm.2018.10.007

Paul S, Sun CC. The suitability of common compressibility equations for characterizing plasticity of diverse powders. Int J Pharm. 2017;532(1):124-130. doi:10.1016/j.ijpharm.2017.08.096

Weaver BP, Hamada MS, Vardeman SB, Wilson AG. A Bayesian approach to the analysis of gauge R&R data. Qual Eng. 2012;24(4):486-500. doi:10.1080/08982112.2012.702381

Gao Z, Moore T, Smith AP, Doub W, Westenberger B, Buhse L. Gauge repeatability and reproducibility for accessing variability during dissolution testing: A technical note. AAPS PharmSciTech. 2007;8(4):2-6. doi:10.1208/pt0804092

Gao Z, Moore T, Smith AP, Doub W, Westenberger B. Studies of variability in Dissolution testing with USP Apparatus 2. J Pharm Sci. 2007;96(7):1794-1801. doi:10.1002/jps

Low A, Kok SL, Khong YM, Chan SY, Gokhale R. A New Test Unit for Disintegration End-Point Determination of Orodispersible Films. J Pharm Sci. 2015;104(11):3893-3903. doi:10.1002/jps.24609

Malladi J, Sidik K, Wu S, et al. Novel platens to measure the hardness of a pentagonal shaped tablet. Pharm Dev Technol. 2017;22(2):246-255. doi:10.1080/10837450.2016.1219370

Dejaegher B, Jimidar M, De Smet M, Cockaerts P, Smeyers-Verbeke J, Vander Heyden Y. Improving method capability of a drug substance HPLC assay. J Pharm Biomed Anal. 2006;42(2):155-170. doi:10.1016/j.jpba.2006.01.001

Castañeda HO, Hernández BE, Amador GE, Melgoza CLM. Production of directly compressible excipients with mannitol by wet granulation: Rheological, compressibility and compactibility characterization. Farmacia. 2019;67(6):973-985. doi:10.31925/farmacia.2019.6.7

Runger GC, Montgomery DC. Gauge capability and designed experiments. Part I basic methods. Qual Eng. 1993;6(1):115-135. doi:10.1080/08982119308918710

Montgomery DC, Runger GC. Gauge capability analysis and designed experiments. Part II: Experimental design models and variance component estimation. Qual Eng. 1993;6(2):289-305. doi:10.1080/08982119308918725

Johnson L, Deaner M. Necessary measures: Expanded gage R&R to detect and control measurement system variation. Qual Prog. 2014;47(7):34-38. doi:10.1145/1290958.1290969

Pan JN. Evaluating the gauge repeatability and reproducibility for different industries. Qual Quant. 2006;40(4):499-518. doi:10.1007/s11135-005-1100-y

Mullarney MP, Hancock BC. Mechanical property anisotropy of pharmaceutical excipient compacts. Int J Pharm. 2006;314(1):9-14. doi:10.1016/j.ijpharm.2005.12.052

Akseli I, Hancock BC, Cetinkaya C. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms. Int J Pharm. 2009;377(1-2):35-44. doi:10.1016/j.ijpharm.2009.04.040

Published

2021-03-22

How to Cite

1.
Melgoza Contreras LM, Castañeda Hernández O, Caraballo Rodríguez I, Bernad Bernad MJ. Design of crossed and nested Gauge R&R studies for the validation of the Heckel and Ryshkewitch-Duckworth mathematical models. Ars Pharm [Internet]. 2021 Mar. 22 [cited 2024 Jul. 22];62(2):190-202. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/17734

Issue

Section

Original Articles